Sensitivity of Nitinol Fatigue Strain to Material Inputs in Finite Element Analysis

Karthikeyan Senthilnathan¹ Tom Duerig¹ Payman Saffari² Craig Bonsignore¹

¹Nitinol Devices & Components, Fremont, CA ²Endologix, Irvine, CA

download PDF bit.ly/smst2015

watch screencast recording http://youtu.be/2JjMATP3ovY

give feedback craig.bonsignore@nitinol.com

Lessons

- 1. For surrogate specimen tests, strain limit diagram (SLD) points depend on FEA to relate displacement to strain
- 2. Small variations in FEA material calibration can result in large changes to strains
- 3. Results are especially sensitive to E_A and UP-LP
- 4. It is important to use multiple samples to calibrate material inputs
- 5. Surrogate specimen experience a wide range of stress and strain, and some target SLD conditions can not be achieved
- 6. Pre-strain may be an important additional dimension to consider when analyzing fatigue

Strain Limit Diagram (SLD)

Strain Limit Diagram (SLD)

Strain Limit Threshold

Strain Limit Threshold

Strain Limit Point *The SLD fatigue threshold is driven by* **strain amplitude**

Surrogare specimen testing relies upon FEA

Surrogate specimen: Crosshead displacements for each targeted σ - ϵ condition are derived using iterative FEA

FEA material properties: Uniaxial tension testing results are used to define UMAT input parameters

Variation in the DATA or the MODEL will influence σ - ϵ points

Lessons

- 1. For surrogate specimen tests, strain limit diagram (SLD) points depend on FEA to relate displacement to strain
- 2. Small variations in FEA material calibration can result in large changes to strains
- 3. Results are especially sensitive to E_A and UP-LP
- 4. It is important to use multiple samples to calibrate material inputs
- 5. Surrogate specimen experience a wide range of stress and strain, and some target SLD conditions can not be achieved
- 6. Pre-strain may be an important additional dimension to consider when analyzing fatigue

Uniaxial test results from two material samples

- Same composition
- Same specification
- Different supplier
- Similar results

Extracting σ - ϵ **points from material data**

Comparing red to blue

- E_A equivalent
- E_M shifted down
- UP shifted up
- LP shifted down

Small shifts in extracted values 20-30% shifts in stress and martensite unloading modulus

	Lot 1	Lot 2	L2-L1	<u>L2-L1</u> ½(L2+L1)
UP (MPa)	430	400	4 30	4 7%
LP (MPa)	105	150	1 45	1 35%
UP-LP (MPa)	325	250	4 75	<mark>↓</mark> 26%
E _M (GPa)	35	26	4 9	↓ 30%

Strain amplitude prediction changes by 70%! *stress, modulus shifts of 20-30% are significantly amplified*

	Lot 1	Lot 2	L2-L1	<u>L2-L1</u> ½(L2+L1)
UP (MPa)	430	400	4 30	4 7%
LP (MPa)	105	150	1 45	1 35%
UP-LP (MPa)	325	250	4 75	<mark>↓</mark> 26%
E _M (GPa)	35	26	4 9	4 30%

	Lot 1	Lot 2	L2-L1	<u>L2-L1</u> ½(L2+L1)
Strain Amplitude	0.0042	0.0087	1 0.0045	1 70%

Implications to SLD threshold

Could our fatigue limit threshold points by wrong by ±70%?

Lessons

- 1. For surrogate specimen tests, strain limit diagram (SLD) points depend on FEA to relate displacement to strain
- 2. Small variations in FEA material calibration can result in large changes to strains
- 3. Results are especially sensitive to E_A and UP-LP
- 4. It is important to use multiple samples to calibrate material inputs
- 5. Surrogate specimen experience a wide range of stress and strain, and some target SLD conditions can not be achieved
- 6. Pre-strain may be an important additional dimension to consider when analyzing fatigue

Let's consider two potential sources of variability

Suspect #1

The Model

Sensitivity of σ-ε results to Abaqus UMAT parameters Suspect #2

The Data

Sensitivity of σ - ϵ results to variation in tensile test results and interpretation of parameters

Suspect #1: The Model

- Completed 12+ FEA simulations of a diamond surrogate.
- Cyclic displacements fixed to target: 3.00% ± 1.00% in baseline model.
- Varied model inputs: ±E_A, ±E_M, ±UP, ±LP, ±UPΔLD
- Measured sensitivity of: ε_{mean}, ε_{amp}, σ_{mean}, σ_{amp}

Suspect #1: The model 12+ models varying material input parameters

<u>2015</u>

I

 \sim

	condition	EA	Е _М	٤L	$\sigma^{L_{s}}$	$\sigma^{L_{e}}$	σ ^U s	σ ^U e	UP-LP
1	E _M = 25, baseline	49,230	25,000	0.041	320	380	150	120	215
2	E _M = 45, +80%	49,230	45,000	0.041	320	380	150	120	215
3	E _M = 35, +40%	49,230	35,000	0.041	320	380	150	120	215
4	E _M = 15, -40%	49,230	15,000	0.041	320	380	150	120	215
5	E _A = 39, -20%	39,000	25,000	0.041	320	380	150	120	215
6	E _A = 59, +20%	59,000	25,000	0.041	320	380	150	120	215
7	UP-LP = 155, -28%	49,230	25,000	0.041	290	350	180	150	155
8	UP-LP = 275, +28%	49,230	25,000	0.041	350	410	120	90	275
9	σ ^L s= 350, +9%	49,230	25,000	0.041	350	410	180	150	215
10	σ ^L s= 290, -9%	49,230	25,000	0.041	290	350	120	90	215
11	σ ^U _s = 180, +20%	49,230	25,000	0.041	320	380	180	150	185
12	σ ^U _s = 120, -20%	49,230	25,000	0.041	320	380	120	90	245

Suspect #1: The model Selected results for each condition

MST <u>2015</u>

<u>~ S</u>

	condition	€ _{mean}	ε _{amplitude}	σ _{mean}	$\sigma_{amplitude}$
1	E _M = 25, baseline	0.030	0.010	409	164
2	E _M = 45, +80%	0.030	0.009	413	171
3	E _M = 35, +40%	0.030	0.009	411	168
4	E _M = 15, -40%	0.030	0.010	408	161
5	E _A = 39, -20%	0.021	0.007	389	155
6	E _A = 59, +20%	0.037	0.012	422	169
7	UP-LP = 155, -28%	0.027	0.013	466	149
8	UP-LP = 275, +28%	0.032	0.007	357	181
9	σ ^L _s = 350, +9%	0.026	0.010	403	148
10	σ ^L _s = 290, -9%	0.034	0.009	417	182
11	σ ^U _s = 180, +20%	0.027	0.012	432	147
12	σ ^U _s = 120, -20%	0.033	0.008	383	182

Suspect #1: The model Least squares regression for sensitivity of strain amplitude

Lessons

- 1. For surrogate specimen tests, strain limit diagram (SLD) points depend on FEA to relate displacement to strain
- 2. Small variations in FEA material calibration can result in large changes to strains
- **3. Results are especially sensitive to E_A and UP-LP**
- 4. It is important to use multiple samples to calibrate material inputs
- 5. Surrogate specimen experience a wide range of stress and strain, and some target SLD conditions can not be achieved
- 6. Pre-strain may be an important additional dimension to consider when analyzing fatigue

Suspect #2: The Data

- Variability in test results
 - Variation in material properties, test, or samples
 - n=5 tests for Lot 1
 - n=5 tests for Lot 2
- Variability in calibration
 - Variation in selection of points from tensile results
 - UMAT parameter extraction repeated 5 times for each test
- Total of 50 UMAT parameter sets

Suspect #2: The Data

variability within sample

Suspect #2: The Data A whole bunch of statistics to compare lots

			Lot1			Lot2				Difference	Percent	P-value	
		mean	stdev	Lower 95%	Upper 95%	mean	stdev	Lower 95%	Upper 95%	_			
Ea	GPa	49	6	46.3	51.5	52	4	50.5	53.8		3	6%	0.98
Em	GPa	28	1	27.2	28.2	21	1	20.6	21.4		-7	-29%	<.0001*
eL	#	0.046	0.002	0.045	0.047	0.040	0.001	0.040	0.041		-0.0056	-13%	<.0001*
UP	MPa	395	7	392	397	352	6	348	354		-43	-12%	<.0001*
LP	MPa	165	6	162	167	126	8	123	130		-39	-27%	<.0001*
UL-LP	MPa	230	6	227	232	225	12	220	230		-5	-2%	0.03*

* also studied, not reported here: variation within lot, variation within sample

Combining data variation + model variation *In this case, the most sensitive inputs don't change much*

	Grand Mean Lot 1	Grand Mean Lot 2	L2-L1	<u>L2-L1</u> ½(L2+L1)			
E _A (MPa)	49,000	52,000	1 3,000	1 6%			
E _M (MPa)	28,000	21,000	4 9	<mark>↓</mark> 29%			
UP (MPa)	395	352	4 30	↓ 12%			
LP (MPa)	165	127	1 45	<mark>↓</mark> 26%			
UP-LP (MPa)	230	225	4 75	<mark>↓</mark> 2%			
	$\varepsilon_a = 3.84 \cdot 10^{-3} + (2 + (2))^{-3}) + (2)^{-3} + (2)^{-3}) + (2)^{-3} + (2)^{-3} + (2)^{-3} + (2)^{-3} + (2)^{-3} + (2)^{-3}) + (2)^{-3} +$	$\varepsilon_{a} = 3.84 \cdot 10^{-3} + (2.65 \cdot 10^{-7} \cdot E_{A}) - (4.65 \cdot 10^{-8} \cdot E_{M}) + (2.14 \cdot 10^{-5} \cdot UP) + (6.22 \cdot 10^{-5} \cdot UP\Delta LP)$					
	Grand Mean Lot 1	Grand Mean Lot 2	L2-L1	<u>L2-L1</u> ½(L2+L1)			
Strain Amplitude	0.0097	0.0102	10.0005	1 5%			

2015

 \sim

Implications to SLD threshold With careful testing and calibration, we're OK in this case

Lessons

- 1. For surrogate specimen tests, strain limit diagram (SLD) points depend on FEA to relate displacement to strain
- 2. Small variations in FEA material calibration can result in large changes to strains
- 3. Results are especially sensitive to E_A and UP-LP
- 4. It is important to use multiple samples to calibrate material inputs
- 5. Surrogate specimen experience a wide range of stress and strain, and some target SLD conditions can not be achieved
- 6. Pre-strain may be an important additional dimension to consider when analyzing fatigue

800

????

???

so questionable

SMST 2015

not understand

learn trick

pls repeat

what

800

11 desired conditions to test Each condition is actually 34,000 different conditions!

<u>SMST 2015</u>

Lessons

- 1. For surrogate specimen tests, strain limit diagram (SLD) points depend on FEA to relate displacement to strain
- 2. Small variations in FEA material calibration can result in large changes to strains
- 3. Results are especially sensitive to E_A and UP-LP
- 4. It is important to use multiple samples to calibrate material inputs
- 5. Surrogate specimen experience a wide range of stress and strain, and some target SLD conditions can not be achieved
- 6. Pre-strain may be an important additional dimension to consider when analyzing fatigue

Strain Limit Diagram – Effect of Pre-Strain

There are indications that increasing prestrain increases the fatigue safety threshold. Prestrain is potentially a third variable to consider when defining fatigue safety criteria, and when analyzing simulation results. (0% < X% < Y% < Z%)

Typical point cloud + fatigue strain limit diagram

(let's assume this limit criteria represents the maximum prestrain condition)

* limit line here is not based on real data; it is for illustration only

Every point in the specimen has a different pre-strain So let's split up the point cloud into some pre-strain "bins"

SMST 2015

The strain amplitude threshold varies with pre-strain So let's consider the pre-strain limit associated with each element

* limit lines here is not based on real data, but do follow a trend similar to observed test results

The most critical point may shift depending pre-strain

* limit lines here is not based on real data, but do follow a trend similar to observed test results

The most critical point may shift depending pre-strain

* limit lines here is not based on real data, but do follow a trend similar to observed test results

Lessons

- 1. For surrogate specimen tests, strain limit diagram (SLD) points depend on FEA to relate displacement to strain
- 2. Small variations in FEA material calibration can result in large changes to strains
- 3. Results are especially sensitive to E_A and UP-LP
- 4. It is important to use multiple samples to calibrate material inputs
- 5. Surrogate specimen experience a wide range of stress and strain, and some target SLD conditions can not be achieved
- 6. Pre-strain may be an important additional dimension to consider when analyzing fatigue

Conventional strain limit diagram *diamond surrogate design, 11 conditions*

Extending the strain limit diagram to 3D *pre-strain vs. strain amplitude*

Extending the strain limit diagram to 3D *pre-strain vs. mean strain*

Extending the strain limit diagram to 3D *back to the original view*

This is not a test of 11 conditions in two dimensions it is a test of 11 sets of 35,000+ conditions in three dimensions!

Conclusion

Fatigue criticality depends on

not just two, but at least three dimensions

(and maybe these aren't even the right ones; mean stress is likely to be implicated as well)

download PDF bit.ly/smst2015

watch screencast recording http://youtu.be/2JjMATP3ovY

give feedback craig.bonsignore@nitinol.com

