

Strain Amplitude Volume Fraction Method for Evaluation of Fatigue Durability

SMST 2013, Prague

Payman Saffari (presenter)
Craig Bonsignore
Payam Saffari

Stress/Strain Field

Example Case: Diamond Specimen

We are Nitinol. ${ }^{\text {mis }}$

Hazard Probability

Volume fraction of inclusions
Critical strain region probability
Putting everything together

Gndc

Example Case: Diamond Specimen

Strain Amplitude, Max. Principal

- +1.106e-02
- +1.014e-02
+9.221e-03
+8.299e-03
+7.377e-03
+6.455e-03
+5.533e-03
+4.612e-03
+3.690e-03
+2.768e-03
+1.846e-03
+9.244e-04
+ $2.648 \mathrm{e}-06$

Step: Session Step, Step for Viewer non-persistent fields
Session Frame
Primary Var: Strain Amplitude, Max. Principal
Deformed Var: not set Deformation Scale Factor: not set

Point Cloud

Point Cloud and Safety Factor: Binary result "PASS" or "FAIL"

Point Cloud Limitations

Point Cloud Limitations

Point Cloud Limitations

Strain Amplitude Volume Fraction

- Define a relevant strain amplitude threshold: $\varepsilon_{\text {limit }}$
- Calculate strain amplitude for all integration points
- Calculate the volume of material for all element having a strain amplitude exceeding the threshold: $\sum \vee \varepsilon_{\text {limit }}$
- Calculate the total volume of material in the model: $\mathrm{V}_{\text {total }}$
- The Strain Amplitude Volume Fraction: SAVF $=\frac{\Sigma \mathrm{V}_{\text {limit }}}{\mathrm{V}_{\text {total }}}$

Hazard probability at any location depends on coincidence of
($\varepsilon_{\text {amp }}>$ threshold) AND (presence of an impurity)

$$
P_{\text {hazard }}=P(A \cap B)=P(A) \cdot P(B)
$$

$P(A)=$ Probability of an impurity at a location = Volume fraction of impurities detected in the material
$P(B)=$ Probability of strain amplitude exceeding threshold at the same location = Volume fraction of elements exceeding threshold in a finite element analysis model

We are Nitinol. ${ }^{\mathrm{m}}{ }^{\mathrm{m}}$

Hazard Probability

Volume fraction of inclusions

Critical strain region probability
Putting everything together

Gnds

Volume fraction of inclusions: Considerations

- ASTM F-2063 requires:
- Voids and nonmetallics $\leq 2.8 \%$ area fraction at 500X
- Oxide and Carbide particles $\leq 39.0 \mu \mathrm{~m}$
- Oxide and Carbide ≤ 500 PPM (by mass)
- None of these provide meaningful information about the volume percent of inclusions in typical materials
- So let's try to figure this out using some new methods...

Volume fraction of inclusions: Methodology

- SEM micrographs, tubing transverse sections, 500X
- 10 micrographs for typical VAR material
- 10 micrographs for typical high-purity VAR material
- An image processing algorithm was used to isolate particles in each image, and quantify their size in $\mu \mathrm{m}^{2}$
- The volume of each particle was estimated as follows:
- if particle area $\leq 25 \mu \mathrm{~m}^{2}$, depth $=(\text { particle area })^{1 / 2}$
- if particle area $>25 \mu \mathrm{~m}^{2}$, depth $=5 \mu \mathrm{~m}$
- The volume fraction of particles was calculated assuming each cross section accounts for $5 \mu \mathrm{~m}$ depth

Typical raw image - VAR material

$264.46 \times 198.35 \mu \mathrm{~m}$ (1280×960); 8-bit; 1.2MB

Typical particle detection - VAR material

151 "particles" (inclusions) detected

Typical raw image - high purity VAR

$264.46 \times 198.35 \mu \mathrm{~m}$ (1280x960); 8-bit; 1.2MB

Typical particle detection - ELI

55 "particles" (inclusions) detected

Volume Histograms for VAR, High Purity VAR

Quantiles

100.0%	maximum	1185.67
99.5%		477.427
97.5%		77.238
90.0%		12.326
75.0%	quartile	3.697
50.0%	median	0.730
25.0%	quartile	0.130
10.0%		0.025
2.5%		0.009
0.5%		0.009
0.0%	minimum	0.009

Summary St	tistics
Mean	10.793
Std Dev	58.644
Std Err Mean	1.48
Upper 95\% Mean	13.706
Lower 95\% Mean	
	1560.000
N=1,560	
$\mu=10.8$	
$\sigma=59$	

Quantiles		
100.0%	maximum	181.000
99.5%		142.010
97.5%		29.986
90.0%		4.772
75.0%	quartile	1.342
50.0%	median	0.200
25.0%	quartile	0.046
10.0%		0.009
2.5%		0.009
0.5%		0.009
0.0%	minimum	0.009

Cumulative probability for inclusions by volume

Cumulative probability for inclusions by volume

We are Nitinol. ${ }^{\mathrm{m}}{ }^{\mathrm{w}}$

Hazard Probability
Volume fraction of inclusions
Critical strain region probability

Putting everything together

Gndc

Critical strain region volume

- An algorithm was developed
- to identify contiguous regions of elements with a strain amplitude exceeding a defined threshold...
- and measure the volume of each of these regions
- The algorithm has been implemented as an Abaqus Python script
- The critical strain regions are illustrated on the following slides

Critical strain region volumes:
 Case 1, strain threshold $=0.4 \%$

The grip region is excluded from calculations

ODB: SE508-fatigue-m3_20-a1_10.odb Abaqus/Standard 6.12-1 Wed May 08 01:13:18 Pacific Daylight Time 2013
Step: Session Step, Step for Viewer non-persistent fields Session Frame

Deformed Var: not set Deformation Scale Factor: not set

Critical strain region volume 1:
 Case 1, strain threshold $=0.4 \%$

Strain Amplitude, Max. Principal

$+5.437 \mathrm{e}-03$$+5.306 \mathrm{e}-03$$+5.176 \mathrm{e}-03$$+5.046 \mathrm{e}-03$$+4.915 \mathrm{e}-03$$+4.785 \mathrm{e}-03$$+4.655 \mathrm{e}-03$$+4.524 \mathrm{e}-03$$+4.394 \mathrm{e}-03$$+4.264 e-03$$+4.133 \mathrm{e}-03$$+4.003 \mathrm{e}-03$	

Batch 1

ODB: SE508-fatigue-m3_20-a1_10.odb Abaqus/Standard 6.12-1 Wed May 08 01:13:18 Pacific Daylight Time 2013
Step: Session Step, Step for Viewer non-persistent fields
Session Frame
z Primary Var: Strain Amplitude, Max. Principal
Deformed Var: not set Deformation Scale Factor: not set

For region 1, $\mathrm{V}_{\varepsilon}=5,671,500 \mu \mathrm{~m}^{3}$

Critical strain region volume 2:
 Case 1, strain threshold $=0.4 \%$

Strain Amplitude, Max. Principal

For region 2, $\mathrm{V}_{\varepsilon}=11,702,000 \mu \mathrm{~m}^{3}$

Batch 2

ODB: SE508-fatigue-m3_20-a1_10.odb Abaqus/Standard 6.12-1 Wed May 08 01:13:18 Pacific Daylight Time 2013
Step: Session Step, Step for Viewer non-persistent fields
Session Frame
Primary Var: Strain Amplitude, Max. Principal
Deformed Var: not set Deformation Scale Factor: not set

Critical strain region volume 3:
 Case 1, strain threshold $=0.4 \%$

Strain Amplitude, Max. Principal

Batch 3

For region 3, $\mathrm{V}_{\varepsilon}=1,791,300 \mu \mathrm{~m}^{3}$

Step: Session Step, Step for Viewer non-persistent fields
Session Frame
Primary Var: Strain Amplitude, Max. Principal
Deformed Var: not set Deformation Scale Factor: not set

Probability vs. critical strain region size

Probability vs. critical strain region size

Probability vs. critical strain region size

We are Nitinol. ${ }^{\mathrm{m}}{ }^{\mathrm{w}}$

Hazard Probability

Volume fraction of inclusions
Critical strain region probability
Putting everything together

Gnd

Hazard Probabilities: VAR Material

VAR Material		unit	Threshold 0.4%
Probability of an inclusion larger than zero	$[1]$	$\%$	0.64%
Probability of a critical strain region larger	$[2]$	$\%$	2.56%
than zero			

Hazard Probabilities: VAR Material

VAR Material		unit	Threshold 0.4%
Probability of an inclusion larger than zero	$[1]$	$\%$	0.64%
Probability of a critical strain region larger than zero	$[2]$	$\%$	2.56%
Hazard probability for model ([1] * $[2])$	$[3]$	$\%$	0.02%
Hazard probability for the model, PPM	$[4]$	PPM	164

Hazard Probabilities: VAR Material

VAR Material	unit		Threshold 0.4\%
Probability of an inclusion larger than zero	[1]	\%	0.64\%
Probability of a critical strain region larger than zero	[2]	\%	2.56\%
Hazard probability for model ([1] * [2])	[3]	\%	0.02\%
Hazard probability for the model, PPM $\left([3]^{*} 10^{\wedge} 6\right)$	[4]	PPM	164
Number of repeating features in device	[5]	N	180
Hazard probability for the device	[6]	\%	2.95\%
Hazard probability for the device, PPM	[7]	PPM	29,491

Hazard Probabilities: VAR Material

| | | unit | Threshold
 0.4% | Threshold
 0.6% | Threshold
 VAR Material |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| 0.8\% | | | | | |

Hazard Probabilities: High Purity VAR Material

High Purity VAR Material		unit	Threshold 0.4\%	Threshold 0.6\%	Threshold 0.8\%
Probability of an inclusion larger than zero	[1]	\%	0.08\%	0.08\%	0.08\%
Probability of a critical strain region larger than zero	[2]	\%	2.56\%	0.84\%	0.38\%
Hazard probability for model (inclusion >0 coincident with strain region >0) ([1] * [2])	[3]	\%	0.00\%	0.00\%	0.00\%
Hazard probability for the model, PPM ([3] $\left.{ }^{\star 1} 10^{\wedge} 6\right)$	[4]	PPM	20	7	3
Number of repeating features in device	[5]	N	180	180	180
Hazard probability for the device	[6]	\%	0.37\%	0.12\%	0.05\%
Hazard probability for the device, PPM	[7]	PPM	3,686	1,210	547

- Extend script to consider strain amplitude threshold as a function of mean strain
- Improve speed of script, and automate analysis
- Extend hazard analysis to incorporate probability as a function of critical strain region size and inclusion size
- Confirm these predictions vs. physical testing results

Abaqus Python Code for critical strain regions

- Python code, this presentation, and related resources are shared publically on GitHub
- https://github.com/psaffari/strain-amplitude-region
- "Fork it", try the code, contribute improvements!

