

Strain Amplitude Volume Fraction Method for Evaluation of Fatigue Durability

SMST 2013, Prague

Payman Saffari (presenter) Craig Bonsignore Payam Saffari

Stress/Strain Field

Example Case: Diamond Specimen

We are Nitinol.[™]

Hazard Probability

Volume fraction of inclusions Critical strain region probability Putting everything together

Example Case: Diamond Specimen

ODB: SE508-fatigue-m3_20-a1_10.odb Abaqus/Standard 6.12-1 Wed May 08 01:13:18 Pacific Daylight Time 2013

Step: Session Step, Step for Viewer non-persistent fields Session Frame Primary Var: Strain Amplitude, Max. Principal Deformed Var: not set Deformation Scale Factor: not set

Point Cloud

Point Cloud and Safety Factor: Binary result "PASS" or "FAIL"

Point Cloud Limitations

Point Cloud Limitations

Point Cloud Limitations

Strain Amplitude Volume Fraction

- Define a relevant strain amplitude threshold: ε_{limit}
- Calculate strain amplitude for all integration points
- Calculate the volume of material for all element having a strain amplitude exceeding the threshold: ∑Vε_{limit}
- Calculate the total volume of material in the model: V_{total}
- The Strain Amplitude Volume Fraction: SAVF =

Hazard probability at any location depends on coincidence of $(\varepsilon_{amp} > threshold) AND$ (presence of an impurity)

 $\mathsf{P}_{\mathsf{hazard}} = \mathsf{P}(\mathsf{A} \cap \mathsf{B}) = \mathsf{P}(\mathsf{A}) \cdot \mathsf{P}(\mathsf{B})$

P(A) = Probability of an impurity at a location = Volume fraction of impurities detected in the material

P(B) = Probability of strain amplitude exceeding threshold at the same location = Volume fraction of elements exceeding threshold in a finite element analysis model

We are Nitinol.[™]

Hazard Probability Volume fraction of inclusions Critical strain region probability Putting everything together

Volume fraction of inclusions: Considerations

- ASTM F-2063 requires:
 - Voids and nonmetallics $\leq 2.8\%$ area fraction at 500X
 - Oxide and Carbide particles \leq 39.0 µm
 - Oxide and Carbide \leq 500 PPM (by mass)
- None of these provide meaningful information about the volume percent of inclusions in typical materials
- So let's try to figure this out using some new methods...

Volume fraction of inclusions: Methodology

• SEM micrographs, tubing transverse sections, 500X

- 10 micrographs for typical VAR material
- 10 micrographs for typical high-purity VAR material
- An image processing algorithm was used to isolate particles in each image, and quantify their size in μm^2
- The volume of each particle was estimated as follows:
 - if particle area $\leq 25 \ \mu m^2$, depth = (particle area)^{1/2}
 - if particle area > 25 μ m², depth = 5 μ m
- The volume fraction of particles was calculated assuming each cross section accounts for 5 μm depth

Typical raw image – VAR material

264.46x198.35 µm (1280x960); 8-bit; 1.2MB

Typical particle detection – VAR material

151 "particles" (inclusions) detected

Typical raw image – high purity VAR

Typical particle detection - ELI

¢ Come · come 5 \$ r o \sim 55 "particles" (inclusions) detected

Volume Histograms for VAR, High Purity VAR

¥		
High Purity VAR	- 1,200 - 800 - 400	Count
0 100 200 300 400 500 600 700 800 900 1,100 1,300 1	,500	

Quan	tiles		Summary Sta	tistics
100.0%	maximum	181.000	Mean	3.562
99.5%		142.010	Std Dev	15.616
97.5%		29.986	Std Err Mean	0.650
90.0%		4.772	Upper 95% Mean	4.839
75.0%	quartile	1.342	Lower 95% Mean	2.286
50.0%	median	0.200	Ν	577.000
25.0%	quartile	0.046	N=577	
10.0%		0.009	N=5//	
2.5%		0.009	μ=3.6	
0.5%		0.009	μ-3.0	
0.0%	minimum	0.009	σ=16	

Cumulative probability for inclusions by volume

Indc

Cumulative probability for inclusions by volume

ndc

We are Nitinol.[™]

Hazard Probability Volume fraction of inclusions Critical strain region probability Putting everything together

Critical strain region volume

An algorithm was developed

- to identify contiguous regions of elements with a strain amplitude exceeding a defined threshold...
- and measure the volume of each of these regions
- The algorithm has been implemented as an Abaqus Python script
- The critical strain regions are illustrated on the following slides

Critical strain region volumes: Case 1, strain threshold = 0.4%

ODB: SE508-fatigue-m3_20-a1_10.odb Abaqus/Standard 6.12-1 Wed May 08 01:13:18 Pacific Daylight Time 2013

Step: Session Step, Step for Viewer non-persistent fields Session Frame

Deformed Var: not set Deformation Scale Factor: not set

Critical strain region volume 1: Case 1, strain threshold = 0.4%

ODB: SE508-fatigue-m3_20-a1_10.odb Abaqus/Standard 6.12-1 Wed May 08 01:13:18 Pacific Daylight Time 2013

Step: Session Step, Step for Viewer non-persistent fields Session Frame Primary Var: Strain Amplitude, Max. Principal Deformed Var: not set Deformation Scale Factor: not set

Critical strain region volume 2: Case 1, strain threshold = 0.4%

ODB: SE508-fatigue-m3_20-a1_10.odb Abaqus/Standard 6.12-1 Wed May 08 01:13:18 Pacific Daylight Time 2013

Step: Session Step, Step for Viewer non-persistent fields Session Frame Primary Var: Strain Amplitude, Max. Principal Deformed Var: not set Deformation Scale Factor: not set

Critical strain region volume 3: Case 1, strain threshold = 0.4%

ODB: SE508-fatigue-m3_20-a1_10.odb Abaqus/Standard 6.12-1 Wed May 08 01:13:18 Pacific Daylight Time 2013

Step: Session Step, Step for Viewer non-persistent fields Session Frame Primary Var: Strain Amplitude, Max. Principal

Deformed Var: not set Deformation Scale Factor: not set

Probability vs. critical strain region size

Y = critical strain region volume (um³)

ndc

Probability vs. critical strain region size

Y = critical strain region volume (um³)

ndc

Probability vs. critical strain region size

Y = critical strain region volume (um³)

We are Nitinol.[™]

Hazard Probability Volume fraction of inclusions Critical strain region probability Putting everything together

VAR Material		unit	Threshold 0.4%	
Probability of an inclusion larger than zero	[1]	%	0.64%	
Probability of a critical strain region larger than zero	[2]	%	2.56%	

VAR Material		unit	Threshold 0.4%	
Probability of an inclusion larger than zero Probability of a critical strain region larger than zero	[1] [2]	% %	0.64% 2.56%	
Hazard probability for model ([1] * [2]) Hazard probability for the model, PPM ([3]*10^6)	[3] [4]	% PPM	0.02% 164	

VAR Material		unit	Threshold 0.4%	
Probability of an inclusion larger than zero Probability of a critical strain region larger than zero	[1] [2]	% %	0.64% 2.56%	
Hazard probability for model ([1] * [2]) Hazard probability for the model, PPM ([3]*10^6)	[3] [4]	% PPM	0.02% 164	
Number of repeating features in device Hazard probability for the device Hazard probability for the device, PPM	[5] [6] [7]	N % PPM	180 2.95% 29,491	

VAR Material		unit	Threshold 0.4%	Threshold 0.6%	Threshold 0.8%
Probability of an inclusion larger than zero Probability of a critical strain region larger than zero	[1] [2]	% %	0.64% 2.56%	0.64% 0.84%	0.64% 0.38%
Hazard probability for model ([1] * [2]) Hazard probability for the model, PPM ([3]*10^6)	[3] [4]	% PPM	0.02% 164	0.01% 54	0.00% 24
Number of repeating features in device Hazard probability for the device Hazard probability for the device, PPM	[5] [6] [7]	N % PPM	180 2.95% 29,491	180 0.97% 9,677	180 0.44% 4,378

Hazard Probabilities: High Purity VAR Material

High Purity VAR Material		unit	Threshold 0.4%	Threshold 0.6%	Threshold 0.8%
Probability of an inclusion larger than zero Probability of a critical strain region larger	[1]	%	0.08%	0.08%	0.08%
than zero	[2]	%	2.56%	0.84%	0.38%
Hazard probability for model (inclusion >0 coincident with strain region >0) ([1] * [2]) Hazard probability for the model, PPM	[3]	%	0.00%	0.00%	0.00%
([3]*10^6)	[4]	PPM	20	7	3
Number of repeating features in device Hazard probability for the device Hazard probability for the device, PPM	[5] [6] [7]	N % PPM	180 0.37% 3,686	180 0.12% 1,210	180 0.05% 547

Future Improvements

- Extend script to consider strain amplitude threshold as a function of mean strain
- Improve speed of script, and automate analysis
- Extend hazard analysis to incorporate probability as a function of critical strain region size and inclusion size
- Confirm these predictions vs. physical testing results

Abaqus Python Code for critical strain regions

- Python code, this presentation, and related resources are shared publically on GitHub
- <u>https://github.com/psaffari/strain-amplitude-region</u>
- "Fork it", try the code, contribute improvements!

This repo	ository - Se	earch or type a	a command ⑦	⊙ Exp	olore Gist Blo	og Help		📕 cbon	isig 🖺 🛠 I
cbonsig / ope	en-stent			n	Pull Request	C Unwatch	* *	Star 0	P Fork
4 Code	Net	work	Pull Requests	0 Issu	ues 0	Wiki	Graph	ŝ	Settings
Open Stent Design —	Read more							_	
🗯 Clone in Mac	⊕ ZIP	HTTP SS	H Git Read-Only	https://gi	thub.com/cbons	ig/open-stent	.git	喦	Read+Write acces
V branch: master	Files	Commits	Branches	1					Tag
pen-stent /		Commits	Branches	1					Tag 9 comm
■ pen-stent / Add open-stent.pdf ma	anuscript		Branches	1			lat	est commi	
■ pen-stent / Add open-stent.pdf ma	anuscript			1 Ys ago	Add open-stent	.pdf manuscripi			⊕ 9 comm
Pen-stent /	anuscript uthored 9 days	ago	9 day		Add open-stent First commit [C		[Craig Bonsi		⊕ 9 comm
Add open-stent / Cralg Bonsignore a DS_Store	anuscript uthored 9 days	ago	9 day 3 mo	rs ago		raig Bonsignore	t [Craig Bonsi 9]		⊕ 9 comm
pen-stent / • Add open-stent.pdf ma ⑦ Craig Bonsignore a □ .DS_Store ◎ Open_Stent_Design	anuscript uthored 9 days gn_20100611.	ago SLDPRT	9 day 3 mo 3 mo	rs ago nths ago	First commit [C	raig Bonsignor	t [Craig Bonsi 9]]	ignore]	⊕ 9 comm
Add open-stent / Add open-stent.pdf ma Craig Bonsignore a D.DS_Store Open_Stent_Desig README.md	anuscript uthored 9 days gn_20100611.	ago SLDPRT	9 day 3 mo 3 mo 9 day	rs ago nths ago nths ago	First commit [C	Craig Bonsignore	t [Craig Bonsi]] t [Craig Bonsi	ignore] ignore]	⊕ 9 comm

