

Shot Peening Process Optimized for Nitinol Medical Devices

Owen Falk, Andreas Wick, Craig Bonsignore, Tom Duerig

Overview

Introduction

Shot Peening Basics

Our Experiment

Results

Conclusion

Questions

Shot Peening Basics

Shot peening process

http://www.cwst.co.uk/services/controlled-shot-peening/ © 2017 Confluent Medical Technologies

Shot Peening Basics

Shot Peening Applications

SMST 2017 SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

http://dsg.files.app.content.prod.s3.amazonaws.com, https://qph.ec.quoracdn.net,

The Million Cycle Question...

Can shot peening be used to improve the fatigue properties of Nitinol medical devices without sacrificing biocompatibility?

Our Experiment

- Material Tested:
 - SE508 Nitinol wire
 - Diameter: 0.600mm
 - Ground surface
- Peening Media:
 - Biocompatible Ceramic Media
 - Particle Size Range: 150-210µm
 - Shape: Spherical
- Subsequent Surface Processing:
 - Electro Polished then Peened Surface
 - Peened then Electro Polished
 - 0.025mm Material Removal
 - 0.038mm Material Removal
 - 0.051mm Material Removal

Testing Methods

- Rotary Bend Fatigue Testing
 - Strain: 1%
 - Testing Media: Water 37°C
- Corrosion Testing
 - Per ASTM F-2129
- SEM Imaging of Surface Quality
- EDAX Analysis of Surface Chemistry
- Nickle Ion Release Testing

Cycles to Break vs. Surface Condition

Corrosion Data

Surface Preparation	Resting Potential (mV)	Break Down Potential (mV)
Electro Polished Wire	84	1050
Electro Polished Wire	87	1050
Electro Polished then Peened	49	353
Electro Polished then Peened	61	246
Peened then EP Remove 0.025mm	5	1090
Peened then EP Remove 0.025mm	24	1090
Peened then EP Remove 0.038mm	63	1070
Peened then EP Remove 0.038mm	84	1060
Peened then EP Remove 0.051mm	74	1060
Peened then EP Remove 0.051mm	80	1050

Corrosion Resistance Key*		
Unacceptable Resistance	<300mV	
Marginal Resistance	300-600mV	
Optimum Resistance	>600mV	

*Per Corbett, R.A. *"Laboratory Corrosion Testing of Medical Implants"* In: Shrivastava S, editor. Proc. Materials and Processes for Medical Devices Conf., Materials Park, OH: ASM International; 2004. p. 166-171.

SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

SMST2017

Conclusions

- Shot peening improves the fatigue performance of Nitinol Wire
- Biocompatibility concerns can be addressed using subsequent processing

Next Steps

- Investigate depth profile of residual stresses
- High cycle fatigue and investigate different strain levels
- Investigation of more complex devices
 - Laser cut stents
 - Thin components

Questions?

bit.ly/smst17ndc

Owen Falk Confluent Medical Technologies

owen.falk@confluentmedical.com

