

The Measurement and Interpretation of Transformation Temperatures in Nitinol

Copyright 2017 Confluent Medical Technologies

Objectives

- Develop a σ-T diagram for a commercially significant NiTi wire
- Establish terminology predictive of the mechanical performance of medical devices
- Clarify several issues pertaining to the measurement and use of transformation temperatures

Objectives

- Develop a σ-T diagram for a commercially significant NiTi wire
- Establish terminology predictive of the mechanical performance of medical devices
- Clarify several issues pertaining to the measurement and use of transformation temperatures

The Forward Transformation (toward Martensite) mapped by the loading plateau*

Copyright 2017 Confluent Medical Technologies

Upper plateau stresses as a function of temperature

Tensile strain during cooling at constant stresses*

* run with video extensometer in an load-controlled, screw-based testing machine

Forward Martensite transus

Determining whether the parent phase is Austenite or R

Resistivity increases as R is formed from A

Resistance under constant stress maps the A-R transus*

* Four point resistance method run in an load-controlled, screw-based testing machine

Forward transformation from A to R

The full A-R-M phase diagram in the forward direction

If the slopes are "crystallographically fixed," extrapolating to the zerostress transformation temperatures defines the entire diagram

DSC: (forward transformation in blue)

Tracking martensite reversion signal after cooling to various temperatures

Integrating the reversion peaks allow one to identify martensite formation temperatures

Moving on to the reverse transformation: (Toward increased entropy)

Unloading plateaus (Martensite reversion... not necessarily Austenite formation)

Heating under constant load

M* refers to the temperature at which Martensite reverts, regardless of whether it reverts to R or A

Using M* terminology rather than R'

Reverse transformation phase diagram

M^{*} - Martensite reversion

A_f - Austenite formation

Extrapolated transformation temperatures

Are in perfect agreement with DSC

"Bend Free Recovery" agrees roughly, but not as well

32

Limitations of "Bend Free Recovery"

- Compression/Tension creates inhomogeneous d σ /dT
- Non-uniform deformation creates residual stresses
- Two percent strain at the outer fiber might mean only less than 5% volume fraction overall
- No strain localization

Tensile free recovery test resolves most of these issues*

* Deformed 2% in tension at -100°C, released, and warmed at 5°C/min. Strain monitored by video extensometer

Caution: Reverse transformation phase diagram is strain dependent

Phase diagram slopes are defined by the entropy and ability of each phase to change shape

Each transus controlled by $(d\sigma/dT) = \Delta S / \Delta \epsilon$, but affected by:

- Loading mode affects $\Delta \epsilon$
- <u>Texture</u> affects $\Delta \epsilon$
- <u>Ni content</u> affects $\Delta \epsilon$ and ΔS
- <u>Relative</u> moduli of two phases affects $\Delta \epsilon$

Forward diagram with triple point

Shifting M down increases upper plateau stress

Apparent $d\sigma/dT$ is an average weighted from the triple point

$(d\sigma/dT)_{apparent} = [(T - T_o)(d\sigma/dT)_{A-M} + (T_o - M_p)(d\sigma/dT)_{R-M}] / (T - M_p)$

Shifting M without R, lowers apparent $d\sigma/dT$

Low temperature aging decreases average $d\sigma/dT$ T is now below the triple point

Traditional superelastic material

"Apparent" dS/dT depends upon how far ambient temperature is from the triple point

"Apparent" dS/dT depends upon how far ambient temperature is from the triple point

"Apparent" dS/dT depends upon how far ambient temperature is from the triple point

The R-M transus is non-linear

The R-phase rhombohedral angle contracts with continued cooling:

- ΔS decreases and
- $\Delta \epsilon$ increases, so
- $d\sigma/dT$ contracts with temperature

The non-linear R-M transus

The full A-R-M phase diagram in the forward direction

Can one predict the transus slopes by measuring Q in a DSC?

Non-conservative contributions to Q prevent are minimal in the A-R transformation

Calculating d σ /dT from DSC fails even in the A-R case

Assuming $\Delta \epsilon$ of 0.5% and $\Delta H \sim Q = 5 J/g$:

 $(d\sigma/dT)_{A-R} = \Delta H/T\Delta \varepsilon = 29 \text{ MPa/}^{\circ}C \text{ (versus 17 MPa actual)}$

But if you really want a fast, non-destructive, accurate way to measure the true A_f , use resistivity.

- A more useful and less ambiguous terminology has been proposed: M* and R*
- A phase diagram was established for commercially relevant superelastic wire in tension
- The diagram is well predicted by DSC

http://nitinol.com