

Effect of Tensile and Compressive Pre-Strains on Superelastic Diamond Surrogates

Karthikeyan Senthilnathan

Ali Shamimi

Ich Ong

Lot Vien

Craig Bonsignore

Tom Duerig

Tension – Tension (0<R<1 ; $\varepsilon_M \neq 0$)

SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Shamimi et al., SMST 2015

2 2017 Confluent Medical Technologie: Rotary Bend Fatigue (R= -1 ; $\varepsilon_M = 0$)

SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

N_f [cycles]

Schaffer, J.E., "Mechanical Conditioning of Superelastic Nitinol Wire for Improved Fatigue Resistance", Journal of ASTM International, Vol. 7, No. 5

Rotary Bend Fatigue (R= -1 ; $\varepsilon_M = 0$)

SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Number of Cycles to Failure (Nf)

Shamimi et al., Unpublished Data

4

Determine whether residual stresses are the primary mechanism for durability improvement in Nitinol

Origins of Residual Stresses

- Localized yielding from a surface notch or from a multiaxial stress state (Bending, Torsion etc.)
- Microstructural inhomgeneities (Presence of inclusions)
- Grain orientation in a poly-crystalline material

Outline

Computational Modeling of Residual Stresses under

- Bending load (diamond specimens)
- Presence of inclusions (tension specimens)

Test Results of Pre-strain Diamond Study

- Test Methodology
- Baseline without pre-strain on diamonds
- Effect of tensile pre-strain on fatigue life
- Effect of compressive pre-strain on fatigue life

Role of superelasticity in residual stresses

Modeling Residual Stresses Diamond Specimens Tension Specimens Pre-strain Diamond Test Results Role of Superelasticity in Residual Stresses

Pre-Strain Diamond Geometry

Diamonds were designed to achieve high pre-strains.

Only the extrados location of the diamond was focused to achieve the desired stress/strain state.

Stress Free Diamond

ODB: NDC-53-07600-R2-precompress-9%-01.odb Abaqus/Standard 3DEXPERIENCE R2016x HotFix 4 Tue Jan 17 17:21:19 Pacific Standard Time 20:

Step: compress Increment 0: Step Time = 0.000 Primary Var: S, Max. Principal (Abs) Deformed Var: U Deformation Scale Factor: +1.000e+00

Tensile Pre-Stress State

Step: compress Increment 33: Step Time = 1.000 Primary Var: S, Max. Principal (Abs) Deformed Var: U Deformation Scale Factor: +1.000e+00

Compressive Residual Stress State

Compressive Residual Stress – FEA Sequence

Compressive Residual Stress – Test Sequence

Compressive Cyclic Stress – FEA Sequence

Compressive Cyclic Stress – Test Sequence

Modeling Residual Stresses Diamond Specimens Tension Specimens Pre-strain Diamond Test Results Role of Superelasticity in Residual Stresses

Tension Inclusion FEA

Inclusion Size : $4\mu m \times 4\mu m \times 4\mu m$ Mesh Size : $1\mu m \times 1\mu m \times 1\mu m$ Wire diameter : 0.22 mm

Starting State

Void

Inclusion Attached

Stress State – Initial

Void 0 MPa

Inclusion Attached 0 MPa

Stress State – Pull 10% Global Strain

Void 1567 MPa; SIF= 1.27

Inclusion Attached 1757 MPa ; SIF= 1.41

Stress State – Released

Step: release 1-10% Increment 188: Step Time = 1.000 Primary Var: S, Max. Principal (Abs) Deformed Var: U Deformation Scale Factor: +1.000e+00

Void -720 MPa

Inclusion Attached -710 MPa

SMST 2017 SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

2017 Confluent Medical Technologie

Effect of Residual Stresses on Upper Plateau Stress – Without Pre-straining (6% global strain)

Void 1063 MPa

Inclusion Attached 790 MPa

Effect of Residual Stresses on Upper Plateau Stress – With 10% Pre-straining (6% global strain)

Void 741 MPa 30% drop

Inclusion Attached 613 MPa 22% drop

Modeling Residual Stresses Pre-strain Diamond Test Results

Test Methodology

Baseline

Tensile Pre-strain

Compressive Pre-strain

Role of Superelasticity in Residual Stresses

Extrados Stress States – Naming Convention

Pre-Stress/Strain – PS

Residual Stress/Strain – RS (Depends on Pre-Stress history)

Cyclic Stress/Strain – CS

MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Combination	<u>Pre-Stress</u> State (PS)	Residual Stress State (RS)	<u>Cyclic Stress</u> State (CS)			
Α	(+)	(-)	(-)			
В	(-)	(+)	(-)			
С	(+)	(-)	(+)			
D	(-)	(+)	(+)			
Inverse Sign						

(+) Tensile(-) Compressive

Hypotheses

SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Fatigue life improves when pre-stress and cyclic stress are of same polarity.

Combination	<u>Pre-Stress</u> State (PS)	Residual Stress State (RS)	<u>Cyclic Stress</u> State (CS)			
Α	(+)	(-)	(-)			
В	(-)	(+)	(-)			
С	(+)	(-)	(+)			
D	(-)	(+)	(+)			
Inverse Sign						

(+) Tensile(-) Compressive

Global Force Displacement – Test

Pre-Stress Diamond Test Conditions

Material: SE508-ELI Sample size: 6 Diamonds (or 12 'V' s at each condition) Test Temperature: 37°C

Pre-strain (Tensile or compressive) : 9% Mean strain: 3.50% Starting strain amplitude: 0.75% Run out: 1 million cycles ; Increase cyclic displacements until specimens fracture

Modeling Residual Stresses Pre-strain Diamond Test Results

- **Test Methodology**
- **Baseline**
- **Tensile Pre-strain**
- **Compressive Pre-strain**
- **Role of Superelasticity in Residual Stresses**

Baseline Test Force Displacement

Baseline Test Results

Mean strain: 3.50%

Run out: 1 million cycles

Sample size: 12 at each condition

Strain Amplitude (%)	Baseline (PS0, CS+)	Combination A (PS+, RS-, CS-)	Combination B (PS-, RS+, CS-)	Combination C (PS+, RS-, CS+)	Combination D (PS-, RS+, CS+)
0.75	Run Out				
1.30	Run Out				
1.88	Run Out				
2.24	Fracture (2)				
2.76	Fracture (5)				
2.90	Fracture (3)				
3.03					
3.16					
3.50					

Modeling Residual Stresses Pre-strain Diamond Test Results

- **Test Methodology**
- Baseline

Tensile Pre-strain

Compressive Pre-strain

Role of Superelasticity in Residual Stresses

Global Force Displacement – Test

Tensile Pre-Strain Results

Pre-strain: (+) 9.00%

Mean strain: 3.50%

Run out: 1 million cycles ; Sample size: 12 at each condition

Strain Amplitude (%)	Baseline (PS0, CS+)	Combination A (PS+, RS-, CS-)	Combination B (PS-, RS+, CS-)	Combination C (PS+, RS-, CS+)	Combination D (PS-, RS+, CS+)
0.75	Run Out	Run Out		Run Out	
1.30	Run Out	Fracture (3)		Run Out	
1.88	Run Out	Fracture (4)		Run Out	
2.24	Fracture (2)	Fracture (1)		Run Out	
2.76	Fracture (5)			Fracture (1)	
2.90	Fracture (3)			Fracture (1)	
3.03				Fracture (1)	
3.16				Fracture (3)	
3.50				Fracture (2)	
		Fracture Initiation: Intrados	:	Fracture Initiation: Extrados	

Modeling Residual Stresses Pre-strain Diamond Test Results

- **Test Methodology**
- Baseline
- **Tensile Pre-strain**
- **Compressive Pre-strain**

Role of Superelasticity in Residual Stresses

Global Force Displacement – Test

Compressive Pre-Strain Results

Pre-strain: (-) 9.00%

Mean strain: 3.50%

Run out: 1 million cycles ; Sample size: 12 at each condition

Strain Amplitude (%)	Baseline (PS0, CS+)	Combination A (PS+, RS-, CS-)	Combination B (PS-, RS+, CS-)	Combination C (PS+, RS-, CS+)	Combination D (PS-, RS+, CS+)
0.75	Run Out	Run Out	Run Out	Run Out	Run Out
1.30	Run Out	Fracture (3)	Run Out	Run Out	Fracture (1)
1.88	Run Out	Fracture (4)	Run Out	Run Out	Fracture (3)
2.24	Fracture (2)	Fracture (1)	Run Out	Run Out	Fracture (2)
2.76	Fracture (6)		Fracture (2)	Fracture (1)	
2.90	Fracture (3)		Fracture (4)	Fracture (1)	
3.03			Fracture (4)	Fracture (1)	
3.16				Fracture (3)	
3.50				Fracture (2)	
		Fracture Initiation	Fracture Initiation:	Fracture Initiation: Extrados	Fracture Initiation:

Survival Plot – Diamond Surrogates

Modeling Residual Stresses Pre-strain Diamond Test Results Role of Superelasticity in Residual Stresses

Residual Stress State – Inclusion Attached (Steel vs. Nitinol)

Inclusion Attached

Steel 316L -450 MPa

SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Inclusion Attached

Nitinol -710 MPa

Residual Stress State – Void (Steel vs. Nitinol)

Void

Steel 316L -420 MPa

SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Void

Nitinol -720 MPa

Summary

Residual stresses through pre-straining can increase or decrease the fatigue life depending on the nature of pre-strain and cyclic stress state.

Fatigue life improves when the pre-stress and cyclic stress are of the same polarity (i.e., tensile or compressive).

The effect of residual stresses is more pronounced in Nitinol compared to a traditional metal.

bit.ly/smst17ndc

Karthikeyan Senthilnathan Confluent Medical Technologies

Karthikeyan.senthilnathan@confluentmedical.com

© 2017 Confluent Medical Technologies