

The Effect of Low Temperature Aging on Ni-Rich Ti-Ni

Ali Shamimi, Confluent Medical Technologies, Fremont, CA Ich Ong, Confluent Medical Technologies, Fremont, CA Lot Vien, Confluent Medical Technologies, Fremont, CA Tom Duerig, Confluent Medical Technologies, Fremont, CA Behnam Amin-Ahmadi, Colorado School of Mines, Golden, CO Aaron Stebner, Colorado School of Mines, Golden, CO

SMST 2017 SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Outline:

• Annealed Ni-rich Ti-Ni

Aging temperatures: 100°C - 200°C & exposure times up to 720 hours (one month)

- Thermal properties (DSC results)
- Microstructural changes
- Cold-Worked and Heat Treated Ni-rich Ti-Ni

Aging temperatures: 100°C - 250°C & exposure times up to 720 hours (one month)

- Thermal properties (DSC results)
- Influence on mechanical properties
- Remarks & Conclusions

DSC Graph – Terminology

Temperature

SMS 201 SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Fully Annealed Sample – Aged at 200°C

SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

© 2017 Confluent Medical Technologies

Fully Annealed Sample – Aged at 150°C

SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Fully Annealed Sample – Aged at 100°C

SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Suppression of Martensite Formation (M_p) and Reversion (M^{*}_p)

SMST 2017 SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Fully Annealed Sample – Baseline

High resolution TEM micrograph along <111> direction

[-111]_{B2}

01-1

Selected area diffraction pattern

No Evidence of Precipitation -

Fully Annealed Sample – Aged at 100°C for 105 hours

Tilting the sample around [110] direction and diffuse intensities (evidence of Ni clustering) are appeared in diffraction pattern.

- Evidence of Ni Clustering (Precursor to Precipitation)*
- Evidence of Precipitation

MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE

Outline:

• Annealed Ni-rich Ti-Ni

Aging temperatures: 100°C - 200°C & exposure times up to 720 hours (one month)

- Thermal properties (DSC results)
- Microstructural changes
- Cold-Worked and Heat Treated Ni-rich Ti-Ni

Aging temperatures: 100°C - 250°C & exposure times up to 720 hours (one month)

- Thermal properties (DSC results)
- Influence on mechanical properties
- Remarks & Conclusions

Sample with Retained CW & Precipitates – Aged at 100°C

Sample with Retained CW & Precipitates – Aged at 100°C

Engr. Strain (%)

SMST 2017 SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

© 2017 Confluent Medical Technologies

Sample with Retained CW & Precipitates – Aged at 150°C

Sample with Retained CW & Precipitates – Aged at 150°C

Engr. Strain (%)

SMST 2017 SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Sample with Retained CW & Precipitates – Aged at 200°C

© 2017 Confluent Medical Technologies

Sample with Retained CW & Precipitates – Aged at 200°C

SMST 2017 Shape memory and superelastic technologies conference and exposition

Sample with Retained CW & Precipitates – Aged at 250°C

Sample with Retained CW & Precipitates – Aged at 250°C

Engr. Strain (%)

SMST 2017 SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Evolution of Martensite Formation (M_p) and Reversion (M_p^*)

SMST 2017 SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Evolution of R-Phase (R_p^*) and Peak Separation ($R_p - M_p$)

SMST 2017 SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE AND EXPOSITION

Clausius-Clapeyron – Relation between Stress and Temperature

Strain

Stabilization of "R-Phase" and its effect on "Stress"

Remarks & Conclusions:

- Ni-rich Ti-Ni is metastable even at temperatures as low as 100°C
- Exposures at temperatures ≤150°C resulted in stiffening of the material due to the suppression of Martensite formation (M_p) & reversion (M^{*}_p)
- Suppression of Martensite could be attributed to Ni clustering, precipitation, or the coherency of the precipitates OR a combination of all
- Exposures at temperatures >150°C resulted in loss of stiffness
- Loss of stiffness is attributed to the decrease in $d\sigma/dT$ due to stabilization of the R-phase
- Stabilization of the R-phase at higher temperatures can also result in materials with an A_f well above body temperature (i.e. 48°C) with pseudoelasticity!
- Caution must be taken when exposing NiTi to temperatures <200°C (e.g. when applying coatings)

bit.ly/smst17ndc

Ali Shamimi Confluent Medical Technologies

ali.shamimi@confluentmedical.com

SMST 2017 Shape memory and superelastic technologies conference and exposition

© 2017 Confluent Medical Technologies