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QUANTIFYING AND PROPAGATING UNCERTAINTY IN 
SUPERELASTICITY SIMULATION INPUTS
Digital image correlation data and Bayesian inference used together facilitate rigorous 
quantification of the uncertainty in material input parameters for finite element 
simulations of superelastic deformation.
Harshad M. Paranjape,* Confluent Medical Technologies Inc., Fremont, California

Kenneth I. Aycock, Jason D. Weaver, and Brent A. Craven, U.S. Food and Drug Administration, 
    Center for Devices and Radiological Health, O!ice of Science and Engineering Laboratories, 
    Division of Applied Mechanics, Silver Spring, Maryland

Craig Bonsignore,* First Article Services LLC, Phoenix, Arizona

Thomas W. Duerig, FASM,* Starlight Cardiovascular, San Diego, California

C
omputer simulations using methods such as finite 

element analysis (FEA) play an important role in the 

design of implantable medical devices that are man-

ufactured from superelastic materials like nickel-titanium 

(NiTi) shape memory alloys (SMA). The simulations are typ-

ically performed in a specific context of use, for example, 

durability assessment of a device under a particular anatom-

ical boundary condition. A topic of emerging importance to 

NiTi simulation is the assessment and reporting of the credi-

bility of a computational model for its context of use[1,2]. This 
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credibility assessment generates evidence supporting the 

use of a computational model for decision making. More-

over, higher model credibility enables medical device man-

ufacturers to use modeling for higher risk and higher impact 

contexts of use. As part of credibility activities, quantification 

and propagation of the uncertainty in material parameter in-

puts increases overall model credibility by providing conser-

vative bounds on the uncertainty in model predictions.

A recent work by the authors implemented a method 

to determine the material parameter inputs and their un-

certainty for a computational model of the superelastic de-

formation of NiTi[3]. The material property determination is 

colloquially referred to as model calibration. This method 

for superelastic model calibration is unique in that it has 

uncertainty quantification built in, it uses full-field surface 

strain data together with global load data as inputs, and it is 

able to furnish both tensile and compressive plateau stress 

material properties from a single test.

CALIBRATION FRAMEWORK
A flowchart summarizing the material property deter-

mination method is shown in Fig. 1. The method essentially 

has three components: (1) a standard tensile test specimen 

geometry and a test protocol to obtain the surface strain 

fields in the test specimen using digital image correlation 

(DIC); (2) a library of simulations of the tensile test specimen 

loading protocol using a range of material parameter input 

values; and (3) a data-processing method using Bayesian In-

ference (BI) to minimize a cost function based on the local 

strain and global load measured experimentally and simu-

lated in the simulation library.

The calibration scheme is demonstrated on a Ti-50.8 

at.%Ni superelastic NiTi sheet material and the superelastic 

constitutive model implemented in the Abaqus finite ele-

ment framework[4]. The typical stress-strain response for the 

FEATURE

Fig. 1 — A flowchart summarizing the material property determi-

nation method. MAP stands for maximum a posteriori. Reproduced 

from Paranjape et al.[3].
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NiTi material is shown in Fig. 2a and the 

six material property inputs for the super-

elastic model in Abaqus—austenite and 

martensite loading slopes (E
A
 and E

M
), 

tensile plateau stresses (
UPS

 and 
LPS

), 

compressive plateau stress (
CPS

), and 

transformation strain (
t
)—are annotated 

in the stress-strain curve. A standard dia-

mond specimen geometry is used. When 

a diamond specimen is loaded in the 

deformation sequence shown in Fig. 2b, 

its struts are subject to bending, and the 

specimen thus exhibits both tensile and 

compressive strains as reflected in the 

shear strains shown in Fig. 2c. The sur-

face strains are experimentally measured 

using a single-camera DIC setup.

A computational model of the dia- 

mond geometry shown in Fig. 2a is 

built in Abaqus, and the superelas- 

tic constitutive material model and the 

loading path shown in Fig. 2b are ap-

plied. A simulation library is constructed 

by instantiating the model 544 times with 

varied material parameter inputs. Specif-

ically, the six material parameters are var-

ied such that they span the typical range 

of values observed in commercially rele-

vant NiTi. From each simulation result, a 

quantity of interest (QoI) is defined based 

on: (1) the local strain values at points 

1 to 4 shown in Fig. 2c and (2) the glob-

al load values in the loading direction 

at 22 equidistant points on the loading 

path A-B-C shown in Fig. 2b. A regression 

model is fitted using the support vector machine (SVM) ma-

chine learning (ML) method that takes a set of six material 

parameters as inputs and furnishes the QoI values. Given an 

experimental dataset consisting of QoIs listed above and the 

trained SVM model that estimates the simulated QoIs, the 

optimum material parameters are determined using the BI 

method, which is a statistical method of determining proba-

bility of a hypothesis based on available data. The numerical 

determination of the Abaqus material parameter probability 

distributions is performed using Markov Chain Monte Car-

lo (MCMC) sampling[5]. In summary, given an experimental 

dataset consisting of local surface strain and global load 

data from a tensile test and a simulation library built from 

a model of the experimental protocol, the method furnishes 

the probability distributions for the six key material param-

eters for the superelastic constitutive model in Abaqus. The 

uncertainty in the determined material properties can be 

quantified from the width of the probability distribution and 

is expressed in terms of credibility intervals.

CALIBRATION RESULTS USING GLOBAL LOAD 

AND LOCAL STRAIN DATA
Sample results for material parameter determination 

using the BI method are shown in Fig. 3. The probability dis-

tributions for the six material parameters are given in Fig. 3a, 

where the median parameters (dashed lines) and the 95% 

credibility intervals (gray highlights) are annotated. A com-

parison of the simulated load-displacement curve obtained 

from the median material parameters and the experimental 

input data is provided in Fig. 3b. A comparison between the 

simulated surface strain distribution in the diamond speci-

men model using the median material parameters and the 

DIC measurement of the surface strains at peak load is shown 

in Fig. 3c. The qualitative agreement between the simulated 

curve from the calibrated model and the experimental input 

is reasonable. Quantitatively, the error between the simula-

tion and the experiment is 17.3% when calculated in terms 

of the mean absolute percent error (MAPE).

Fig. 2 — A summary of the test protocol: (a) diamond specimen geometry and a schematic 

of the superelastic stress-strain response; Y is the sheet rolling direction; (b) schematic of the 

loading sequence used in the test protocol; and (c) surface strain map of diamond at peak 

load measured using DIC. Adapted from Paranjape et al.[3].

Fig. 3 — Sample results of the calibration method. (a) Probability distribution of determined 

material parameters. (b) Comparison of experimental load-displacement data and simula-

tion results from the determined parameters. (c) A comparison of experimental and simula-

tion data for surface shear strain. Adapted from Paranjape et al.[3].

(a) (b) (c)

(a) (c)

(b)
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The ratio of compressive plateau stress (
CPS

) to the ten-

sile plateau stress (
UPS

) in the sample result above is approx-

imately 1.0. This is a reasonable number for a typical NiTi 

sheet material that has a strong < 1 1 0 > texture component.

PROPAGATION OF MATERIAL PROPERTY 

UNCERTAINTY TO SIMULATIONS OF CYCLIC LOADING
Here, an example of propagating the uncertainty in 

the material parameters determined using the BI method 

is demonstrated using a simulation of NiTi fatigue loading. 

The material parameter probability distributions shown in 

the sample results above are used in a simulation of cyclic 

loading of the diamond-shaped NiTi specimen introduced in 

Fig. 1a. The cyclic loading path is shown in Fig. 4a and the 

extrema of the cyclic loading path are annotated by labels 

D and E. The commonly used fatigue indicator parameters 

for NiTi—mean strain and strain amplitude—are calculated 

using the tensor method[6]. A scatter plot of strain ampli-

tude vs. mean strain obtained from a simulation is shown in 

Fig. 4b. Fatigue safety factors are typically estimated using 

the mean strain and strain amplitude at the critical point in 

the model. In this example, the critical point is taken as the 

point where the largest strain amplitude occurs. The critical 

point is shown by a red square in Fig. 4b. A series of simula-

tions with material parameters in the 95% credible intervals 

of the material parameter distributions shown in the sample 

result above are carried out and probability distributions are 

constructed from the mean strain and the strain amplitude 

at the critical point in each simulation. 

These probability distributions are shown 

in Figs. 4c and d. The strain amplitude 

shows a range of approximately 0.007, 

which may translate to a large uncertain-

ty in the fatigue safety factor calculated 

using these strain amplitude data.

CONCLUSIONS
In this article, the authors have de-

veloped and described the implemen-

tation of a method for determining the 

material parameter inputs to the su-

perelastic constitutive model for nick-

el-titanium with their accompanying 

uncertainty. The inputs to the method 

are surface full-field strain data and glob-

al load data obtained from one or more 

tensile tests on an appropriate specimen 

and a simulation library that provides a 

dataset with various combinations of ma-

terial parameter inputs and correspond-

ing strain and load outputs. This method 

uses Bayesian Inference to obtain a prob-

ability distribution of the input parame-

ters. The numerical implementation of 

the method uses Markov Chain Monte Carlo sampling ac-

celerated by a machine learning method that augments the 

results obtained from the simulation library. There are four 

main benefits of this model calibration method:

i. The probability distribution of the material parameters 

determined using this method automatically furnishes a 

quantification of uncertainty in the parameters. The uncer-

tainty can be communicated using measures such as cred-

ible intervals.

ii. The uncertainty in the material parameters can be prop-

agated to subsequent simulations such as simulation of fa-

tigue loading of NiTi samples.

iii. The diamond specimen geometry used in this method 

enables determination of tensile as well as compressive pla-

teau stresses from a single test.

iv. The machine learning element of this method allows 

use of a relatively small simulation library compared to per-

forming calibration without such library augmentation.

This is a versatile method in the sense that it can be 

applied to any constitutive model implemented in finite ele-

ment solvers. The statistical methods such as Markov Chain 

Monte Carlo sampling used in this scheme are implemented 

in a wide variety of software tools such as Matlab and Py-

thon. While the overall accuracy of the simulation results 

primarily depends on the accuracy of the underlying con-

stitutive model, methods such as these can help quantify, 

communicate, and propagate uncertainty in the simulation 

FEATURE

Fig. 4 — Propagation of uncertainty in material parameters to a simulation of cyclic loading: 

(a) cyclic loading path; (b) strain map obtained using a fatigue simulation; and (c, d) probabil-

ity distribution of mean strain and strain amplitude respectively at the critical point obtained 

from a series of simulations. Adapted from Paranjape et al.[3].

(a) (b)

(c) (d)
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inputs. A wide adaption of methods such as these can help 

make the paradigm of using a risk-informed approach for in-

corporating computer simulation results in the design and 

performance evaluation of nickel-titanium-based implant-

able medical devices a standard practice.

Notes

This article is based on the authors’ work, Reference 3, 

which is licensed under the CC BY license (creativecommons.

org/licenses/by/4.0/).

The findings and conclusions in this article have not 

been formally disseminated by the U.S. FDA and should not 

be construed to represent any agency determination or pol-

icy. The mention of commercial products, their sources, or 

their use in connection with material reported herein is not 

to be construed as either an actual or implied endorsement 

of such products by the Department of Health and Human 

Services. ~SMST

For more information: Harshad M. Paranjape, principal 

research engineer, Confluent Medical Technologies Inc., 

47533 Westinghouse Dr., Fremont, CA 94539, 510.683.2184, 

harshad.paranjape@confluentmedical.com.
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