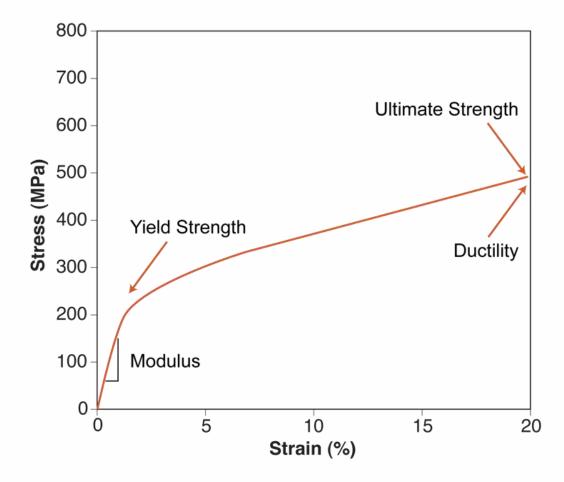
Metals as Implantable Materials

Tom Duerig, Ph.D President, NDC tom.duerig@nitinol.com www.nitinol.com

Disclosures

- The author is employed by Nitinol Devices & Components, Inc. ("NDC"),
- a supplier and development partner to many companies developing Nitinol medical devices.

Common Metallic Materials for Medical Implants

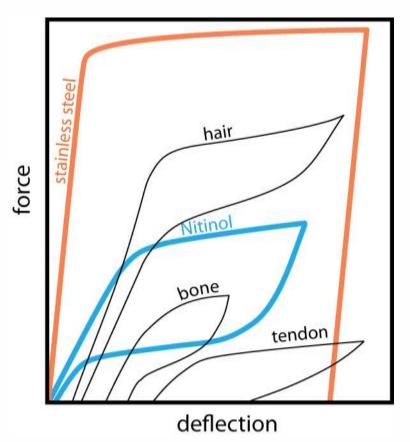

- Stainless Steel (316L)
- Cobalt–Chrome (MP35N, L-605, and Elgiloy)
- Titanium (Ti-6AI-4V and CP titanium)
- Nickel-Titanium (Nitinol)

Compositions (in weight percent)

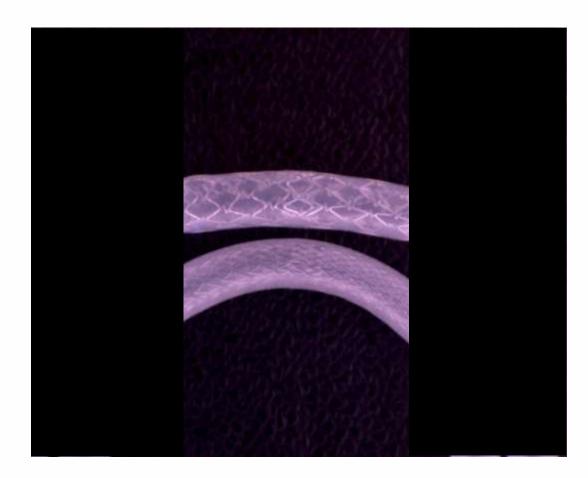
Key Element	Stainless Steel (316L)	Cobalt-Chrome (Elgiloy, MP35N, L-605)	Titanium (CP, Ti-6-4)	Nitinol
Iron	63%	1-15%		
Titanium			90-100%	45%
Nickel	14%	15-35%		55%
Chromium	18%	20%		
Cobalt		40-50%		
Other	Mo, Mn	Mo, Mn, W	Al, V	

Attribute	Stainless Steel	Cobalt-Chrome	Titanium	Nitinol
Strength				
Stiffness				
Fatigue				
Corrosion				
Other				

Strength: What is it?

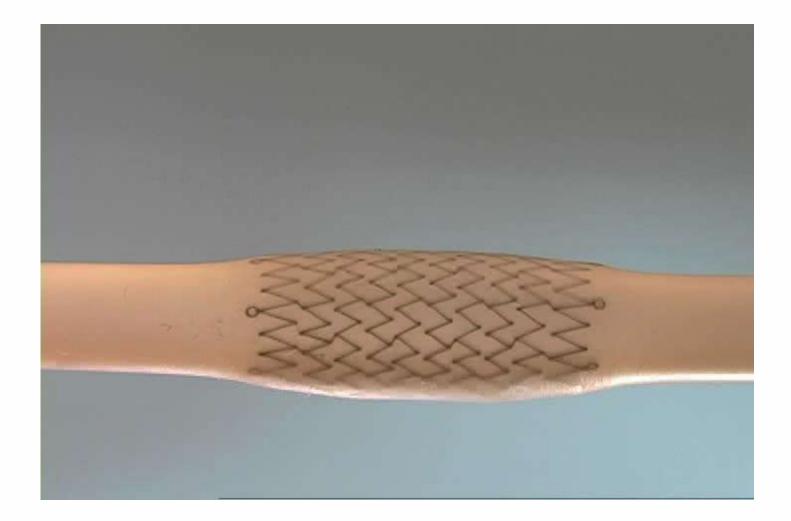

Attribute	Stainless Steel	Cobalt-Chrome	Titanium	Nitinol
Strength	medium (300/560 MPa)	high (600/1140 MPa)	high (880/950 MPa)	high (500/1400 MPa)
Stiffness				
Fatigue				
Corrosion				
Other				

"Strength" is often confused with "Stiffness"



Stiffness is the opposite of compliance

Significance to a stent

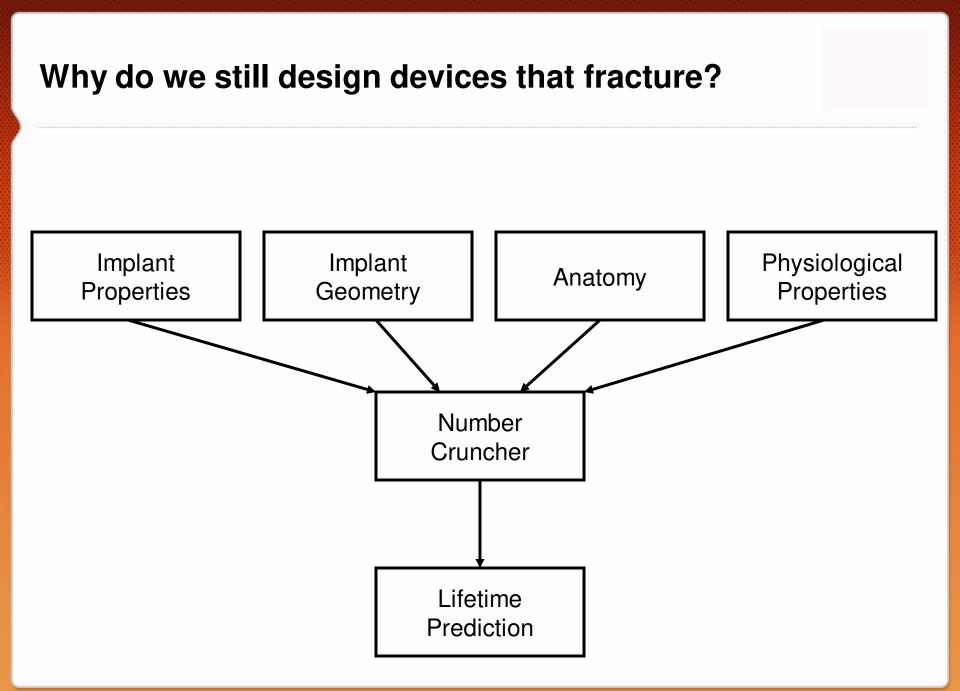

Significance to a stent

Attribute	Stainless Steel	Cobalt-Chrome	Titanium	Nitinol
Strength	medium (300/560 MPa)	high (600/1140 MPa)	high (880/950 MPa)	high (500/1400 MPa)
Stiffness	high (200 GPa)	High (200 GPa)	moderate (90 GPa)	very low (~25 GPa)
Fatigue				
Corrosion				
Other				

Pulasatile durability

Which is more fatigue resistant, a rubber band, or a steel band?

They both are.

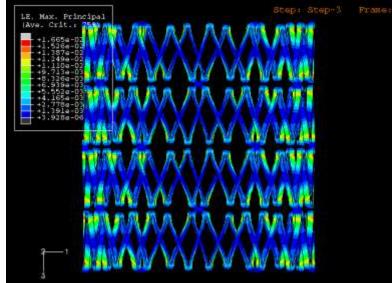

A rubber band resists cyclic displacements better, but

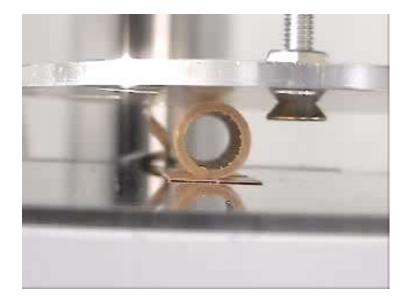
a steel band resists cyclic loads better.


Fatigue Resistance is Related to Stress/Strain

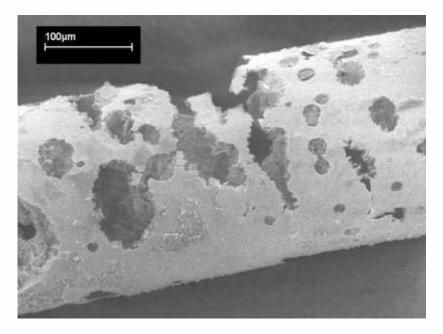
Attribute	Stainless Steel	Cobalt-Chrome	Titanium	Nitinol
Strength	medium	high	high	high
	(300/560 MPa)	(600/1140 MPa)	(880/950 MPa)	(500/1400 MPa)
Stiffness	high	High	moderate	very low
	(200 GPa)	(200 GPa)	(90 GPa)	(< 50 GPa)
Fatigue	Good in	Good in	Good in	Good in
	load control	load control	load control	strain control
Corrosion				
Other				

Why do we still design devices that fracture?


Non-pulsatile Influences



Non-Pulsatile durability



Corrosion Resistance

Attribute	Stainless Steel	Cobalt-Chrome	Titanium	Nitinol
Strength	medium	high	high	high
	(300/560 MPa)	(600/1140 MPa)	(880/950 MPa)	(500/1400 MPa)
Stiffness	high	High	moderate	very low
	(200 GPa)	(200 GPa)	(90 GPa)	(~25 GPa)
Fatigue	Good in	Good in	Good in	Good in
	load control	load control	load control	strain control
Corrosion	Good – Cr ₂ O ₃	Good – Cr ₂ O ₃	Excellent – TiO ₂	Excellent – TiO ₂
	(500 mV)	(500 mV)	(800 mV)	(800 mV)
Other				

Attribute	Stainless Steel	Cobalt-Chrome	Titanium	Nitinol
Strength	medium	high	high	high
	(300/560 MPa)	(600/1140 MPa)	(880/950 MPa)	(500/1400 MPa)
Stiffness	high	High	moderate	very low
	(200 GPa)	(200 GPa)	(90 GPa)	(~25 GPa)
Fatigue	Good in	Good in	Good in	Good in
	load control	load control	load control	strain control
Corrosion	Good – Cr ₂ O ₃	Good– Cr ₂ O ₃	Excellent – TiO ₂	Excellent – TiO ₂
	(500 mV)	(500 mV)	(800 mV)	(800 mV)
Other	MRI	L-605 is	Can be	Shape
	artifacts	radiopaque	radiopaque	Memory