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Abstract Recent advances in the Data Science methods

for acquiring and analyzing large amounts of materials

deformation data have the potential to tremendously benefit

Nitinol (Nickel–Titanium shape memory alloy) implant

design and simulation. We review some of these data-dri-

ven methodologies and provide a perspective on adapting

these techniques to Nitinol design and simulation. We

organize the review in a three-tiered approach. The meth-

ods in the first tier relate to data acquisition. We review

methods for acquiring full-field deformation data from

implants and methods for quantifying uncertainty in such

data. The second-tier methods relate to combining data

from multiple sources to gain a holistic understanding of

complex deformation phenomena such as fatigue. Methods

in the third tier relate to making data-driven simulation of

the deformation response of Nitinol. A wide adaption of

these methods by the Nitinol cardiovascular implant com-

munity may be facilitated by building consensus on best

practices and open exchange of computational tools.

Keywords Nitinol � Shape memory alloys � Modeling �
Data-driven

Introduction

Data Science—a collection of scientific methods to gather

and analyze data—has emerged as a versatile tool to

advance the descriptive and predictive capabilities in var-

ious areas of science and engineering. As an example of the

descriptive capabilities, data science enables determining

parameters that most influence the response of a system. It

also enables quantification of uncertainty in the measure-

ments of the behavior of a system. In terms of the pre-

dictive capabilities, data science enables the development

of predictive models for the response based on the

observed data and not on analytically derived functions

based on a postulated form or ansatz. The tools in this data-

driven paradigm such as high-speed and multi-modal data

acquisition, efficient data storage and retrieval, and statis-

tics-related learning techniques such as machine learning

(ML) have already found several applications specific to

the mechanics of structural materials [1, 2]. Cardiovascular

implant design that relies on the mechanics of the under-

lying materials can greatly benefit by adapting this data-

driven paradigm.

Nitinol or Nickel–Titanium shape memory alloy, which

is one of the most common materials used in these devices,

exhibits monotonic and cyclic mechanical behavior that is

complex enough to warrant over four decades of continu-

ous scientific attention. The monotonic mechanical

response of Nitinol is challenging to model and predict due

to the presence of superelasticity, anisotropy, and strong

dependence on the processing parameters [3]. The cyclic

response of Nitinol is even more challenging to predict
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because of the structural and functional fatigue caused by

the interaction between the deformation mechanisms of

phase transformation and plasticity, the complex role

played by non-metallic inclusions in initiating a fatigue

fracture, and the large-cycle regime (107–109 cycles) rel-

evant to the cardiovascular implants [4, 5].

The phenomena mentioned above are made possible by

a diffusionless phase transformation that can reversibly

occur in Nitinol in response to an applied stress or a tem-

perature change [3, 6]. The transformation occurs between

two phases referred to as austenite and martensite. The

austenite phase in Nitinol has a cubic crystal structure. The

martensite phase mainly has a monoclinic crystal structure,

but it can have a trigonal crystal structure as well. In the

latter case, the martensite is referred to as the R-phase. The

stress-induced, reversible martensitic transformation to the

monoclinic martensite phase results in a large recoverable

strain and furnishes the phenomenon of superelasticity that

is widely used in implants. This property allows a Nitinol

stent to be crimped to a compact size and deployed to a

larger size without any permanent deformation. The

microstructure of the phase-transformed Nitinol is how-

ever, quite complex. It consists of domains of austenite,

domains of monoclinic martensite with its own nanos-

tructure called twinned martensite, in some cases domains

of R-phase, and regions of plastically deformed austenite

and martensite. This is in addition to the microstructural

features that are present in all alloys such as grains and

subgrains formed during the solidification and heat treat-

ment of alloys, non-metallic inclusions due to oxygen,

carbon and other impurities inherited from air or vessels

used in the solidification of the alloys, and dislocation

networks due to the cold work imparted during the pro-

cessing of alloys. During the use of an implant made using

Nitinol, the microstructure evolves due to nuanced pro-

cesses such as the transformation-induced slip around

growing and shrinking martensite domains [7] and large

stress concentrations around non-metallic inclusions [8]

that can cause local plastic deformation.

Because of these complexities, the simulation of Niti-

nol-based implant deformation typically relies on phe-

nomenological models that rarely account for the

specificities of pre-processing and microstructure that

affect the mechanical behavior of Nitinol materials used in

individual products. The macro-scale, phenomenological

models that are typically used in the device-scale simula-

tions rely on small-strain formulation, assume isotropy, and

opt to mostly not capture the coupling between phase

transformation and plasticity. One of the more common

Nitinol simulation implementation used in the industry is

based on the work of Auricchio and others [9]. This model

is generally able to capture the superelastic response and

the asymmetry in tension and compression response.

Additions to the implementation in commercial finite ele-

ment analysis tools such as Abaqus and Ansys now allow

simulation of plastic deformation, hardening of the trans-

formation response, and evolution in the transformation

behavior with cyclic loading. More recent advancements to

the simulation of Nitinol behavior are reviewed by Cisse

et al. [10]. The macro-scale models, relevant to the device-

scale simulations, are either based on phenomenology or

energetics of inelastic deformation. In either case, the form

of a model depends on the aspects of the deformation

considered by the developer. For example, the developer

may choose to model the multi-step austenite $ R-phase

$ martensite transformation but choose not to model the

reorientation of martensite variants. Zaki, Moumni, and

colleagues have developed a series pf phenomenological

models that capture aspects of Nitinol deformation such as

reorientation of self-accommodated martensite, superelas-

tic deformation, plastic deformation, coupling between

phase transformation and plasticity, tension-compression

asymmetry, and evolution of response on cycling [11–13].

These models do not capture multi-step phase transfor-

mation and functional fatigue. The model of Peultier et al.

is based on the energetics of a representative volume ele-

ment consisting of an aggregate of austenite grains and

martensite domains [14]. They are able to capture both

superelastic and shape memory response. This model does

not capture most other aspects of deformation exhibited by

Nitinol. Thus, even though a variety of models exist for

simulating the deformation of Nitinol, not a single model

can be guaranteed to capture the response of an implant

manufactured using a particular form of Nitinol and having

undergone a specific sequence of processing steps. Addi-

tionally, it is common for complex models to require sig-

nificant effort to determine the input material properties

and they tend to be slower. The versatile data-driven

paradigm holds the potential to advance the simulation of

Nitinol deformation by providing two key benefits: a

constitutive law that is directly built on the observed

response and not based on a limited set of selected defor-

mation behaviors and a potential speedup due to the data-

based learning methods used in the implementation of

these simulation methods. Considering how commonplace

computer simulation is in the design of Nitinol-based car-

diovascular implants, this advance can positively impact

the industry practice.

Since Nitinol deformation simulation is expected to be

predictive, it is essential to develop reliable methods to

acquire data that will act as inputs to the simulation.

Experimental data are used in simulations of Nitinol

deformation for various purposes. Most fundamentally, the

experimentally measured constitutive response data or the

stress–strain curves inform the deformation modes that

need to be simulated. Tensile testing data on medical-grade
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Nitinol inform us that elasticity, superelasticity, and plas-

ticity are three deformation modes through which Nitinol

deforms. Experimentally measured constitutive response

data are also used to determine simulation model param-

eters. This process is typically known as model calibration

or material property determination. Finally, experimental

data are used to validate the simulation results. For

example, the superelastic material properties in many

medical device deformation simulations are determined

using tensile test data. Then, the simulation results are

validated by performing a separate simulation of a different

deformation mode such as bending or radial loading and

comparing the results with corresponding experimental

data.

The experimental data acquired for these purposes could

be global, full-field, or mixed-mode. Global data refers to

measurements such as the load measured on a specimen

that is tested in tension or the tensile strain averaged over

the gage of the specimen. Full-field data on the other hand

provides a spatially resolved measure of deformation. Full-

field measurements provide a larger quantity of data in a

single measurement compared to global measurements.

Thus, full-field deformation measurements have become

commonplace for informing simulations or for validation

of the models. However, in many instances, the availability

of input data are limited or it is time consuming to acquire

experimental data from a particular source. Thus, it is

advantageous to merge data from multiple available sour-

ces. Above all, simulation is one of the available tools

when designing Nitinol-based medical devices or when

demonstrating durability of such devices under a particular

use case. Because of this, it is essential to quantify and

communicate the credibility of data used to build the

simulations and also quantify the credibility of simulation

results [15, 16]. Communication of simulation credibility

helps the stakeholders in determining the extent to which

they can rely on the simulation results to make decisions

regarding device safety and efficacy. Quantification of

credibility using methods generally accepted by the com-

munity helps communicate the simulation credibility

objectively. In other words, with the knowledge of the

simulation credibility, the role played by simulations in a

risk-informed decision making scheme can be appropri-

ately determined. For example, simulations used for dura-

bility assessment can be of greater utility if a simulated

fatigue safety factor and the uncertainty associated with it

are both known.

With this motivation, we review the recent advances in

the field and provide a perspective on the adaption of the

data-driven experimental and modeling methodologies to

Nitinol mechanics. Considering that the field is nascent, we

propose a three-tiered approach suitable for a gradual

adaption of these methodologies. The aim behind

proposing this approach is to provide an organization for

the body of relatively new methods reviewed in this work.

Hence, the tiers in this approach are an example and

practitioners can adapt them to suit their resource avail-

ability and target timeframe. The tiers are illustrated in

Fig. 1. The first tier relates to the acquisition of Nitinol

material property data and quantification of the uncertainty

in the data. This is referred to as the information tier. The

second-tier relates to fusing multi-modal data to reveal

mechanisms that fundamentally determine the Nitinol

mechanical behavior. This is referred to as the knowledge

tier. The third tier relates to making performance or

property predictions-based directly on the available data

rather than relying on subjectively derived analytical

expressions or phenomenological models based on a pos-

tulated form or ansatz. This is referred to as the prediction

tier.

Recent advances in the data-based methods organized in

these three tiers are summarized in the next three sections.

We first describe methods in information tier that enable

acquisition of Nitinol material deformation data and also

enable quantification of the credibility of that data. Then

we describe methods in the knowledge tier that facilitate

assimilation of data from multiple sources to uncover

knowledge about deformation mechanisms. Finally, we

review methods in the prediction tier to simulate the

deformation of elasto-plastic materials. We provide a per-

spective to extend these methods to simulate the defor-

mation response of superelastic Nitinol implant

components. These methods fundamentally differ from the

existing simulation approaches in that they learn the stress–

strain relationship or the constitutive law based on any

available deformation data and depend less on developer-

chosen postulates regarding the form of the constitutive

law. We close by summarizing the review, providing a

specific idea of Nitinol simulation where some of these

methods can be applied, summarizing the limitations of

this approach, and providing a short discussion on pro-

moting a broader adaption of these data-driven method-

ologies by the Nitinol community.

The adaption of methods described here demands a

substantial investment in terms of resources required for

their research and implementation. The gains from adap-

tion of these methods will be incremental. But these

methods overcome the following key challenges related to

the current methods for characterization and simulation of

Nitinol implants:

1. Uncertainty quantification is an integral part of these

data-driven methods. Presentation of simulation results

and uncertainty together makes these methods more

suitable for serving as in-silico evidence for demon-

strating durability of Nitinol implants. Verification,
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validation, and uncertainty quantification with existing

simulation methods is generally an afterthought and it

often requires comparable or larger effort.

2. The data-driven simulation approach requires a rela-

tively large upfront development effort but reduces the

need for ad-hoc changes to the simulation framework

in order to simulate phenomena specific to a Nitinol

raw material or a device. For example, established

simulation models for superelasticity can be aug-

mented with some effort to enable simulation of

R-phase formation. But a model-free, data-driven

simulation approach can intrinsically enable the incor-

poration of R-phase transformation in the simulated

response if the model is trained on data that exhibits

the R-phase transformation.

3. The data-driven constitutive modeling methods pro-

moted in this work use computational learning meth-

ods that are intrinsically designed to use modern

computational hardware such as graphics processing

unit (GPU) to accelerate computation. Existing com-

putational methods have been relatively slow to enable

the use of these modern computational hardware. Thus,

the new approach is more suitable to benefit from the

rapid advancement in computer hardware including the

use of hardware specifically designed to run the

implementations of these learning techniques.

With these key benefits of the new data-based simulation

paradigm for Nitinol implants, we are optimistic about the

adaption of these methods through example tiers described

below.

Methods to Acquire Data and Quantify
Uncertainty in the Data

Full-Field Data Acquisition Methods

Several methods have been demonstrated for measuring the

full-field deformation of metals and specifically, the

deformation of shape memory alloys [17]. These methods

include surface measurement techniques such as digital

image correlation (DIC) and Moiré Interferometry and

volume measurement techniques such as 3D high-energy

X-ray diffraction [18, 19].

The DIC technique for measuring full-field surface

strain field has been widely adapted in academic settings

[20]. DIC relies on imaging a quasi-random pattern on the

surface of the test specimen at certain intervals and ana-

lyzing the change in the pattern to calculate surface dis-

placement and strain fields [21]. In relation to mechanical

behavior simulation, an important use of DIC is to identify

the simulation inputs. Most common simulation inputs

determined using DIC are the material properties. This

process is often referred to as model calibration. Pierron

and co-authors provide a detailed overview of various

methods for identifying the material properties using DIC

measurements [22, 23]. The large amount of strain data

acquired using DIC can help obtain more accurate material

properties for complex constitutive models such as those

for Nitinol superelasticity. Another application of DIC is in

the validation of finite element analysis (FEA) models of

deformation [24]. Comparing local deformation results

between simulation and DIC measurement can provide a

more appropriate validation of the model versus comparing

just the global results such as load. While the DIC tech-

nique has received wide adaption in the automotive,

aerospace, and other industries, it has received relatively

small adaption in the medical device design industry.

Fig. 1 An example three-tiered

approach to incorporating data-

driven methods in the modeling

and simulation of Nitinol

mechanics
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Aycock and co-authors recently described a detailed

framework for measuring full-field deformation on the

surface of Nitinol medical devices [25]. They describe the

complete pipeline for acquisition of full-field strain data

including the details of a miniature load frame appropriate

for loading small-scale Nitinol implants, the method for

acquiring DIC data, and a snapshot of representative results

for the strain data. Quantification of error in the measured

strain data are useful in quantifying the credibility of the

DIC data. In that regard, they also provided detailed

methodology and analysis for quantifying the error and the

noise in the acquired data. Acquisition of full-field defor-

mation data from actual medical devices can provide a

more effective means of validating computer simulation

models used in the design or durability assessment of that

particular device. Senol and co-authors have described the

use of DIC to validate fatigue strain simulations of a

Nitinol test specimen [26]. They demonstrate the use of 2D

DIC for measuring mean and alternating strains during

cyclic loading of a Nitinol surrogate specimen. Their

results demonstrate that the strain amplitudes compare well

between DIC measurements and simulations, but the mean

strains differ. The difference is particularly notable in the

medium mean strain values where phase transformation

occurs through a part of the gage of the specimen. These

approaches can be combined to develop an end-to-end

workflow to inform and validate the simulations used in the

durability assessment of a Nitinol device. Such a workflow

can even provide an experimental substitute to the calcu-

lation of fatigue safety factor of a Nitinol implant subjected

to particular boundary conditions. An example workflow

for the direct evaluation of fatigue indicator parameters and

potentially for the evaluation of the fatigue safety factor is

shown in Fig. 2 and further described in [27]. The work-

flow first establishes a standard test specimen representa-

tive of the geometry of that particular medical device

(Fig. 2a). Here we show a diamond specimen that has

historically been used to represent the unit cell of a typical

stent. However, the workflow is generic and can be applied

to other specimen geometries as well [28, 29] and can be

applied to test coupons cut from an actual device. Then, a

DIC test setup to measure the surface strains in the speci-

men is constructed (Fig. 2b). A variety of commercial DIC

setups are available or they can be built using an appro-

priate selection of cameras, lighting systems, environ-

mental control solutions, and DIC post-processing

software. A cyclic loading protocol (Fig. 2c) to impose a

cyclic deformation on the specimen is needed. While the

Fig. 2 Full-field strain measurement on a diamond Nitinol test

specimen during cyclic loading. a Schematic of the diamond

specimen. b Schematic of the digital image correlation (DIC) setup.

c Schematic of the global load–displacement response showing initial

monotonic loading and then cyclic loading in a subcycle. d Strain

point cloud in the subcycle obtained from full-field surface strains on

the diamond measured using digital image correlation. e Experimen-

tally measured mean strain distribution in the diamond apex region.

f Corresponding strain amplitude distribution
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protocol can be as simple as a pre-deformation followed by

cyclic application of a displacement range, a protocol that

is more representative of the anatomical boundary condi-

tions experienced by the implant can be developed. As the

deformation of Nitinol is dependent on strain rate and

temperature, it is necessary that the test protocol is repre-

sentative of these deformation conditions that an implant

will be subjected to. This may require testing of the

material in an aqueous medium and at a quasi-static strain

rate. Commercial DIC implementations typically enable

this, though the experimental setup could become cum-

bersome due to these requirements. Using these three

pieces of infrastructure, the surface strain fields on the

implant can be measured. The surface strain fields can be

used to calculate the fatigue strain map or the point cloud

of strain amplitude vs. mean strain as shown in Fig. 2d

using an appropriate scalar or tensor method [30]. The data

in turn can be used to plot distributions of the mean strain

(Fig. 2e) or the strain amplitude (Fig. 2f) on the device

profile. These data can be subsequently used to determine

the fatigue safety factor. While this approach is limited to

the fatigue strain assessment on the specimen surface and

perhaps one surface of the specimen geometry facing the

DIC camera system, it may be adequate since critical

fatigue strains often occur on the specimen surface rather

than in the interior volume for many common device

geometries [27].

As described in the example above, the DIC technique

has tremendous potential utility in the quantification of

medical device deformation and in complementing simu-

lation. Continuing advances in the test hardware will make

this technique more accessible to the medical device

industry. Advances in data science are also leading to

advances in the full-field deformation characterization

methods. Recently several authors have implemented

algorithms for full-field deformation quantification using

deep learning, a statistical data analysis method in the

family of ML techniques. For example, Boukhtache et al.

developed a convolutional neural network framework that

can be trained on a specific speckle pattern and strain

dataset and used to obtain displacement and strain fields

from other speckled specimen images [31]. This approach

can provide subpixel resolution at a speed comparable to

DIC when displacements per step are less than one pixel.

Similarly Yang et al. have developed a framework of two

convolutional neural networks—DisplacementNet and

StrainNet—for DIC-like full-field deformation quantifica-

tion [32]. A key contribution of their approach is that the

StrainNet neural networks can directly predict strain fields

without having to determine displacement fields as an

intermediate and then calculating numerical derivatives to

obtain strains. They demonstrate that this approach is able

to furnish superior results to some of the commercial DIC

offerings at large strains and in large localized strain con-

ditions. We note that these techniques provide an alterna-

tive to DIC for obtaining surface strain fields and currently

they are limited to 2D strain fields and do not include depth

sensing. Zhu and co-authors have applied computer vision

techniques to obtain surface strains [33]. Their approach

differs from the two deep learning methods described

above and also fundamentally differs from DIC in that, Zhu

et al. implement a multi-scale image feature registration

algorithm that progressively determines the deformation

between a reference image and a result image by sampling

those images at various resolutions. Both DIC and deep

learning methods on the other hand analyze images at a

certain subset level and furnish strains at that same length

scale. These advancements mean that full-field data

acquisition can be a useful new tool for informing and

validating medical device simulations.

Methods for Uncertainty Quantification

While inputs, methods, and outputs of medical device

simulations often receive extensive scrutiny, one aspect

that generally receives a lower attention is the uncertainty

of the inputs and its impact on the credibility of simulation

outputs. For example, in simulation studies for assessing

fatigue safety of medical devices, it is typically seen as

adequate to report a fatigue safety factor greater than one.

In reality, a fatigue safety factor greater than one means

little if the simulation is based on inputs that have a large

uncertainty associated with them. Thus, reporting of

uncertainty in experimental or simulation data are just as

important as acquiring that data.

Recently, various efforts have developed consensus

methods of evaluating and communicating credibility of

computational models [15, 34, 35]. Overall, they recom-

mend that the credibility of a computational model should

be commensurate with the level to which its results are

used in making final decisions related to device efficacy or

safety. Once an expectation on the credibility of compu-

tational model is set, some of the methods reviewed below

can be used to assess the uncertainty in the inputs to the

computational models and then propagate those input

uncertainties to the simulation results.

Ricciardi and co-authors propose a framework for

quantifying uncertainties in simulation model parameters

such as the hardening parameters for a plastic deformation

model when the parameters are determined using experi-

mental data [36]. Their approach, based on Bayesian

inferential framework, can be used to predict the uncer-

tainty in the mechanical behavior of samples that are not

yet tested. They provide a detailed discussion on the for-

mulation of a Bayesian model for uncertainty quantifica-

tion and propagation of uncertainty to subsequent
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simulations of deformation. The Bayesian approach is a

statistical method that allows estimation of the probability

of a hypothesis being correct based on the available

information. This is an appropriate tool for structural

mechanics when the intent is to determine the probability

distribution of certain mechanical parameters based on

available experimental data. The use of Bayesian inference

applied to model parameter determination is a well-estab-

lished practice in structural mechanics [37, 38] and other

engineering disciplines [39]. However, until recently, this

method has not been applied to the simulation of medical

device deformation. Paranjape and co-authors recently

applied the technique to determine the probability distri-

bution of superelastic FEA material parameters determined

from experimental full-field strain and global load data

[40]. They also demonstrated that the uncertainties in the

superelastic material parameters can be propagated to the

simulations of fatigue safety factor determination. This

furnishes a fatigue safety factor value and its credibility

intervals. A narrow credibility interval corresponds to a

lower uncertainty in the results. Their approach consists of

developing a ML surrogate model for the superelastic FEA

model so that the sampling of the material property dis-

tribution can be performed more efficiently.

The topic of using probabilistic methods such as the

Bayesian method for calibrating the inputs of a constitutive

model receives some resistance because of the perception

that they incur significantly higher upfront effort compared

to the more typical ad-hoc methods. There continues to be

development of more efficient methods such as efficient

sampling strategies for Bayesian calibration that will con-

tinue to reduce this burden. Here sampling refers to the

numerical methods that are used to obtain the full proba-

bility distribution of a parameter under the framework of

Bayesian inference. Sampling can be a computationally

burdensome effort. lye and co-authors provide a tutorial on

various sampling methods in the family of Monte Carlo

methods to illustrate the rate of convergence, numerical

challenges, and time required to obtain a probability dis-

tribution of a parameter [41]. More generally, Cranmer and

co-authors list opportunities for advancement for these

probabilistic methods in three areas - better determination

of uncertainty distribution using smaller input datasets,

improving how accurately the uncertainty distribution is

determined based on the input model parameters, and

making uncertainty quantification more modular such that

new data can be sequentially plugged in to update the

probability distribution [42].

The statistical methods to quantify the uncertainty in

simulation parameters and results are well-established and

implemented in a variety of common computational tools

such as Python and Matlab. As reviewed above, full-field

data acquisition methods that can be used to inform such

Bayesian inference methods of input parameter determi-

nation and uncertainty quantification are also well-estab-

lished. Thus, we are in a position to broadly adapt these

methods and make input and output uncertainty quantifi-

cation a standard practice in the simulation of Nitinol

medical device deformation. The methods described here

can also be applied to other simulation inputs such as

anatomical boundary conditions that are determined from

computed tomography, radiography, or other experimental

means.

The methods described in this section were in the

information tier of the three-tiered approach for adapting

data-driven methods to Nitinol implant design and simu-

lation. The knowledge tier methods described below to

uncover patterns and mechanisms for deformation phe-

nomena such as fatigue benefit from the methods described

in this section.

Methods to Fuse Data and Uncover Mechanisms

Many mechanistic problems encountered in the design of

cardiovascular implants cannot be directly solved by

acquiring experimental data using the sophisticated meth-

ods described above. Nor they can be solved by sophisti-

cated simulations alone. Modeling of fatigue is one such

problem. Fatigue is a loss in functionality, loss in strength,

or catastrophic fracture in components due to cyclic load-

ing. An implantable medical device is subjected to cyclic

loading due to the cardiac rhythm. If such a device is

improperly designed, it can lead to a fatigue failure. Thus,

demonstration of durability is an important step in the

design of implants. A key input in determining the dura-

bility of an implant is the fatigue resistance of the under-

lying Nitinol material itself. It is generally accepted that the

fatigue resistance characterization of the base material

should be performed to an equivalent number of cycles as

the actual device is expected to be exposed to [43]. If the

implant under consideration is in the structural heart space,

this means that the base material might need to be tested to

600 million cycles. Such testing is expensive and time

consuming. Instead, if a model is available that can predict

the fatigue resistance distribution at a given fatigue life or

the fatigue life distribution at a given resistance as a

function of microstructural and macro inputs, it can sig-

nificantly reduce the amount of testing required. Further,

such model can be used to estimate fatigue resistance even

if changes to material purity and pre-processing factors

such as pre-straining or cold work are made at an inter-

mediate phase during the implant design process. Thus, we

first review data fusion approaches in the literature related

to fatigue life prediction of elasto-plastic and superelastic
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materials and particularly focus on approaches that have

used data science tools such ML.

Sangid reviewed opportunities for combining data from

multiple sources to more efficiently predict deformation

and failure modes of structural materials [44]. A particular

opportunity they mention is using microstructural simula-

tions to augment the fatigue data so that fatigue strain-life

curves can essentially be extrapolated to lower fracture

probabilities. Chen and Liu provide a comprehensive

review of ML approaches used in the modeling of various

fatigue-related phenomena [45]. In one particular example,

Durmaz et al. describe a modular and automated workflow

to test fatigue specimens, measure specimen deformation,

automatically identify damage initiation regions, and

develop a predictive model for fatigue initiation sites in

metallic materials [46]. While their work centered more on

microstructural features such as grain boundaries, materials

such as stainless steel, and fatigue crack growth monitoring

rather than on fatigue life itself; the multimodal fatigue and

microstructure data acquisition workflow described by

them is worth adapting for Nitinol fatigue life prediction.

Gebhardt et al. combined impurity shape information from

micrographs and fatigue strength information from

microstructural simulations to develop a model for fatigue

life of nodular cast Iron [47]. The impurity size and shape

distribution were the inputs to the model. They used a ML

tool called simplified ResNet. These impurity or inclusion

size distributions have received wide attention in many

alloy industries, because inclusions are perhaps the most

important microstructural entities relevant to fatigue

Fig. 3 An example of a data fusion strategy for developing a predictive model for fatigue life or fatigue resistance of a Nitinol base material. FIP

stands for fatigue indicator parameter
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[48, 49]. For example, Murakami and coworkers have

developed models for fatigue strength as a power-law

function of the inclusion area fraction [50, 51]. Some work

has been done on describing the size distribution of

inclusions using methods such as extreme value statistics

[52] and on quantifying their effect on the fatigue response

of Nitinol [53]. Despite this rich literature on the connec-

tion between metal fatigue and inclusion size statistics,

limited work has been done using learning methods such as

ML to predict fatigue life as a function of the inclusion

statistics. Specific to Nitinol, Kafka and co-authors,

building on the work of Moore et al., developed an

approach to predict the fatigue life of Nitinol at a fixed

strain amplitude as a function of particle-void-assembly

size and location [54, 55]. They combine highly simplified

particle or inclusion size data from 3D characterization

with a microstructural model for plastic deformation. Their

results capture the generally understood trend that the

fatigue life decreases with increasing impurity particle size.

They also predict that the fatigue life increases with

increasing void size for a void that is present between

adjacent inclusion particles. Inspired by these examples

and particularly by the work of Durmaz et al. on prediction

of fatigue life based on microstructural data from multiple

sources, we now provide a perspective on an approach to

predict the fatigue life of Nitinol based on microstructural

information.

An example approach based on data fusion that can be

used to predict fatigue life or fatigue resistance of Nitinol

base materials is illustrated in Fig. 3. The goal of this

approach is to predict the fatigue life distribution or fatigue

strength distribution of a Nitinol base material when

information on the impurity or non-metallic inclusion

shape and size distribution is known. By Nitinol base

material we mean sheet, strip, tubing or similar Nitinol

material forms that have undergone a particular processing

sequence. By fatigue life we mean the number of cycles

required to cause fracture at a given strain amplitude. By

fatigue resistance we mean the strain amplitude requited to

cause fracture at a given number of cycles. By distribution

we mean a median value and associated uncertainty bounds

or an equivalent uncertainty quantification. We propose

that the proposed approach is developed in three phases.

The three phases, schematically shown in Fig. 3, are

described below.

The first phase, named the test method design phase,

involves selection of Nitinol materials of various

microstructural attributes and the design of a test specimen

that can be used to make a fatigue test coupon. This may

include materials with differing Oxygen and Carbon con-

tent, particle-void-assembly area fraction, inclusion mor-

phology distribution, and cold work. Diamond, dogbone,

and C-shaped dogbone [28] are some of the specimen

geometries that may be considered for making the test

specimens from these materials.

The second phase—the characterization phase—in-

volves a multi-modal characterization of the microstructure

and the fatigue performance of these materials after they

have undergone appropriate processing such as pre-defor-

mation. The microstructural attributes that most signifi-

cantly influence the fatigue performance will be selected.

This selection can be performed using statistical methods

such as principal component analysis or it can be informed

by data in the literature regarding property-fatigue perfor-

mance correlation. Significant work on identifying key

microstructural parameters influencing fatigue has been

performed on Ti-based alloy systems [56, 57] and it can be

extended to Nitinol. These microstructural attributes will

be characterized in the Nitinol materials using 2D and 3D

methods. 2D characterization methods include metallog-

raphy and scanning electron microscopy to identify non-

metallic inclusion fraction. 3D methods include micro-

computed tomography that provide volumetric information

on the microstructural elements. A full 3D characterization

of the microstructural elements may be more desirable

because of the anisotropy inherent to most drawn Nitinol

products. A monotonic and cyclic performance character-

ization will be performed on the test specimens manufac-

tured from these materials using displacement boundary

conditions that result in a range of mean strains and strain

amplitudes that typically occur in cardiovascular implants.

The monotonic characterization will be performed to

determine the relation between displacement boundary

conditions and strains. While this function is typically

performed using simulation methods such as FEA, a fully

experimental approach using methods such as DIC, as

described in Fig. 2 may be advantageous. Cyclic charac-

terization will be performed under these displacement

boundary conditions to obtain fatigue-to-fracture data.

These data can be later used to determine fatigue resistance

for a specific fatigue indicator parameter such as the strain

amplitude, transformation volume amplitude, or a stress- or

energy-based fatigue indicator. Fatigue-to-fracture data

allows calculation of the fatigue strength distribution or

fatigue life distribution. The testing will be performed to a

reasonable number of cycles representative of the clinical

area where these models will be eventually used. For

example, if the fatigue data will be used for Nitinol heart

valve design, then tests to 600 million cycles should be

performed. If the data will be used for the design of

peripheral vascular prostheses, then tests to a lower cycle

count such as 10 million cycles could be performed. The

monotonic and cyclic characterization together provides a

map of the fatigue resistance of the material as a function

of mean strain and strain amplitude or other similar fatigue

indicator parameters. While a damage tolerant approach is

Shap. Mem. Superelasticity

123



less commonly used in the design of durable Nitinol

implants, fracture mechanics and fractography may provide

additional insights on the fatigue failure mechanisms.

In the third phase, referred to as the modeling phase, a

model for fatigue resistance and fatigue life will be con-

structed. The fatigue resistance and fatigue life will be

modeled to be a function of the microstructural parameters

such as impurity size and a function of the fatigue indicator

parameters such as mean strain and strain amplitude. Rel-

atively simple regression methods can be used to construct

the model. However, recently, ML and other statistical

methods have made several other tools available for such

model construction [45]. Many prior works in the literature

related to fatigue life model generation have focussed on

the stress-life models. However, the methodologies docu-

mented in those works can be extended to strain-life

approach relevant to Nitinol. Barbosa and co-authors

described a ML method to fit stress-life models to mean

stress, stress amplitude, geometric parameters, and fatigue

life data [58]. The inputs to their ML model are the mean

stress and a target fatigue life. The ML model, based on a

shallow neural network, furnishes the stress amplitude

corresponding to the inputs. Chen and Liu developed an

ML model for determining fatigue life and the uncertainty

in the fatigue life as a function of multiple inputs [59].

Their shallow neural network-based model is able to

incorporate mechanistic constraints based on common

observations related to the fatigue life vs. mean stress

relationship. These constraints could include the presence

of a knee seen in the stress/strain-life curves of some

materials. Their model is also able to incorporate both

fracture and runout data. Statistical methods other than ML

can also be used to develop models of fatigue life. Dourado

et al. developed a Bayesian fitting method for strain-life

data [60]. Their method enables the quantification of

uncertainty in the fatigue life predictions performed using

the model. The fatigue life estimation itself is assisted by a

Coffin-Manson-type law and they assume a log-normal

distribution for the fatigue life. Whichever is the method

used to construct the model, the utility of this data-based

approach is that the fatigue life or fatigue resistance of

materials that have not been tested before can be predicted

using this data-driven framework. The fatigue model

development described here may also be able to uncover

new dependencies between fatigue life and various pro-

cessing parameters or microstructural parameters.

The data fusion approach described here for predicting

fatigue resistance aids in uncovering fatigue mechanisms

by providing a holistic view of the cyclic deformation

response of Nitinol. But, a holistic view by itself does not

directly reveal fatigue mechanisms. It can reveal material

parameters that primarily influence the fatigue behavior or

reveal non-intuitive dependencies. However, we may still

have to make interventions when uncovering mechanisms

using the data and resources that are available to us. We

will also have to be creative in designing experiments that

capture nuanced effects of microstructure on fatigue such

as the effect of stress field around inclusions on fatigue life.

As the data acquisition methods and fatigue model devel-

opment methods become more efficient and robust, a

progressively reduced oversight may be possible in the

development of predictive models for fatigue and we will

be able to capture the effect of more complex aspects of

microstructure on fatigue.

The methods in the knowledge tier, described in this

section, are primarily descriptive and in part predictive. We

now provide a review and perspective on predictive data

science methods for Nitinol design and simulation.

Methods to Make Data-Driven Predictions
of Nitinol Deformation Response

The most impactful utility of data-driven methods is in

terms of their predictive capabilities. The ability to predict

the deformation response of a Nitinol component under

various boundary conditions on the basis of a limited

information on the constitutive response of the base

material is essential in the design of Nitinol implants.

Various constitutive modeling and simulation tools such as

FEA typically provide this capability. Constitutive

response of a material is the relation between stress and

strain. Knowledge of accurate constitutive response is one

of the most important prerequisites for reliable simulation

of Nitinol implant deformation. While the implementation

of the constitutive response of Nitinol in simulation tools

has incrementally advanced over the years, a leap in real-

istic constitutive modeling can significantly enhance the

accuracy of simulation of implants. It will also contribute

to making in-silico evidence of device durability a widely

accepted part of the device regulatory approval process. A

field where data science methods are used to develop

simulation methods for the constitutive response has

emerged. These methods are often referred to as data-dri-

ven constitutive modeling. Several methods have been

proposed for the data-driven simulation of elasto-plastic

deformation. If applied to the superelastic deformation

simulation, these methods can significantly advance the

simulation of Nitinol deformation.

Data-driven methods of constitutive response simulation

can be broadly grouped in two closely related categories:

Surrogate models and model-free data-driven methods

[61]. Surrogate models use stress–strain data from existing

state-of-the-art simulation methods and create a computa-

tionally efficient surrogate regression model using methods

such as deep neural networks. Regression-methods-based
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surrogate models can be efficient because they do not need

to iteratively solve the field evolution equations in order to

determine the local load or stress response. Model-free

data-driven methods on the other hand train the constitutive

response based on indirect data. For example, they derive

the stress–strain response at a material point based on an

experimental dataset consisting of global load and local

surface strain histories. This derivation of the constitutive

response is generally performed under the constraint of

applicable physical laws such as equilibrium and conser-

vation of energy. Model-free methods are notable such that

they directly derive the deformation mechanics from the

experimental data and do not rely on expert judgement or

local stress–strain history from a pre-built higher-fidelity

simulation data library to define a particular model form.

Development of surrogate models for history-dependent

constitutive response such as elasto-plastic response has

been explored for several decades [62]. However, it has

become feasible in the last few years due to the increased

availability of computational resources and the availability

of easy-to-use implementations of sequence-learning

methods such as long short term memory (LSTM) and

gated recurrent units (GRU). Work of Mozaffer et al. was

one of the first studies to develop a surrogate model for

path-dependent plastic deformation response in 2D [63].

They used a simulation library as an input and used the

GRU sequence-learning ML method. Their method is able

to capture material hardening and stress concentration due

to local inhomogeneities. Other similar approaches have

demonstrated enhanced capabilities such as modeling of

constitutive response with anisotropic yield behavior [64],

using temporal convolutional network (TCN)—another

ML sequence-learning technique—to provide a surrogate

for visoplastic and temperature-dependent response [65],

using Linearized Minimal State Cell—a form of recurrent

neural network—to obtain a data-driven plasticity surro-

gate model from long sequences of stress–strain history

data [66], and the use of internal state variables [67].

Huang and co-authors propose a method for building a

data-driven history-dependent inelastic constitutive law

where they suggest obtaining the stress–strain sequence

data for training from experiments on specialized speci-

mens such as biaxial cruciform geometry [68]. Designing

specialized specimen geometries is essential for obtaining

strain paths that cover a large portion of the strain space

such as tension, compression, non-proportional loading,

etc. Liu et al. present another innovation in developing a

surrogate model for plasticity based on the simulation data

obtained at a finer length scale [69]. That is, they train a

data-driven surrogate model on the stress–strain data

obtained using finer-length-scale simulations that imple-

ment constitutive modeling techniques such as crystal

plasticity and then use the surrogate model in the larger-

length-scale simulations that yield macro-scale stress as a

function of a macro-scale strain increment. The work of

Karapiperis et al. is in the same domain as it seeks to build

a data-driven constitutive law based on lower length-scale

simulation results [70].

Model-free data-driven methods of simulation for

inelastic materials have been developed in the last few

years. Eggersmann and co-authors developed a data-based

approach to build a constitutive law [71]. Their approach is

able to incorporate history-dependence by directly training

the data-driven constitutive law on the strain history or

through incorporation of internal variables. While their

approach fundamentally depends on the availability of

local stress–strain data pairs to train the constitutive law,

their collaborators have demonstrated methods that can

extract the requisite local stress–strain data from the

macro-scale boundary conditions and local strain fields

[72, 73]. Since these approaches provide options to incor-

porate internal variables or history variables in the consti-

tutive law determination, they could be appealing for

extension to superelasticity simulation where martensite

phase fraction can act as an internal variable to capture the

history dependence of deformation. The recent work of

Langlois et al. provides an extension of this approach

where the constitutive law is obtained from an initial

approximation of the local stress state [74]. The approxi-

mate local stress state is obtained from the local strain field

using the finite element model updating (FEMU) method.

The local strain field can be measured using methods such

has DIC. They demonstrated the method on an elasto-

plastic material showing strain localization and thus, this

method could lend well to the simulation of superelastic

response that occasionally exhibits strain localization fea-

tures such as Lüder’s bands. Cameron and Tasan [75]

propose an approach that can extract full-field stresses from

full-field strain and traction boundary conditions. Their

approach requires the knowledge of elastic strain compo-

nent at each point, which could be challenging. However,

this approach is still feasible if the material behavior is

assumed to be elastic and the elastic modulus is known

from an initial analysis of the experimental stress–strain

response. Once the full-field stresses and strains are known,

a constitutive law can be constructed using one of the

sequence-learning methods cited in the paragraph above.

Flaschel et al. propose an approach that obtains a consti-

tutive law with an ansatz selected from a catalogue of pre-

defined functions [76, 77]. With a reasonably large pre-

built catalogue, this approach can be suitable for modeling

any complex stress–strain response.

Each method in this broad collection of data-driven

methods has sought to address specific nuances of consti-

tutive law development. Yet all of these methods rely on

certain non-trivial statistical techniques such as
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minimization or ML-based regression to obtain the con-

stitutive law. Thus, these methods tend to be critiqued on

two common aspects. First, there are concerns that the

black-box statistical formulations used in many of these

techniques make it challenging to check for any violations

of the fundamental thermodynamics or statics principles.

This is particularly critical when the data used for training

the constitutive law is noisy and contains outliers, which if

taken at their face value can lead to non-physical defor-

mation modes. Some efforts such as the work of Masi et al.

have attempted to address this concern by encoding the

fundamental thermodynamic conservation principles in the

structure of the constitutive modeling ML framework itself

[78]. This approach is part of a broader effort to develop

physics-informed ML methods for various physics and

mechanics problems [79]. Second, there are concerns that

the large amount of data used to train the constitutive laws

using these methods makes it challenging to quantify the

uncertainty in the predictions from these models. Thus,

there have been attempts to quantify the uncertainty in the

ML-based constitutive modeling including the work of Sun

et al. [80]. Moreover, researchers such as Koeppe et al.

have developed approaches that can develop inter-

pretable models that can be used to describe the mechanics

rather than just develop statistically accurate models for

constitutive response [81]. All advances reviewed here may

seem like at the cutting-edge where only proof-of-concept

implementations suitable for simulating very basic

boundary value problems are available. While that may be

true for many publications listed here, a variety of efforts

have demonstrated end-to-end implementations of their

approach including incorporation of the data-driven meth-

ods in FEA solvers [82, 83].

This development of data-driven model-free methods to

simulate constitutive response is impressive and we believe

we have all the components necessary to develop a data-

driven constitutive modeling solution for Nitinol. Such an

approach will allow simulation of Nitinol implant defor-

mation based on experimental data obtained from a Nitinol

base material that has undergone-specific pre-processing

such pre-deformation or heat treatment steps. We propose

an example framework for developing such a simulation

method. The framework is schematically shown in Fig. 4.

It consists of six steps.

1. The implementation begins with the creation of a

standard test specimen and test protocol for acquiring

experimental data used to train a data-driven consti-

tutive law. The test specimens could be as simple as

dogbone-shaped or consist of more complex forms

such as cruciform or planar specimens with holes. The

specimens should be suitable for acquiring spatial

strain distribution history using methods such as DIC.

2. Using the standard test method described above,

mechanical testing data under various conditions will

be gathered. The test conditions should encompass the

conditions that the modeled implant will be typically

experiencing. The mechanical data could consist of

local strain and global load histories.

3. The implementation then extracts the local stress field

from the mechanical data recorded above. This can be

achieved using the approach of Stainier et al. [72] or

Cameron and Tasan [75] described above. The local

stress–strain histories obtained in this step will be

stored in a database and will serve as the training and

validation data.

4. In this step, a data-driven model will be constructed for

the constitutive response using the stress–strain history

data described above and a suitable statistical method

such as an ML regression scheme. The output of this

Fig. 4 A example workflow proposed for developing a data-driven constitutive law for Nitinol superelasticity
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step is a database of ML regression model hyperpa-

rameters that can be stored.

5. FEA implementations of constitutive modeling typi-

cally require a constitutive law and a tangent modulus

or the Jacobian matrix (or=o�) to perform the com-

putation in a discretized implicit time-integration

scheme. The Jacobian will be constructed using a

suitable automatic numerical differentiation method

[83, 84].

6. Once the data-driven constitutive law and the Jacobian

are available, they can be programmed in an FEA

framework such as the UMAT user material subroutine

functionality in Abaqus FEA framework. Note that the

data-driven constitutive law will be invoked in each

increment of the simulation and furnish the stress

tensor at that material point and increment based on the

strain history, strain increment, and any stored data on

history-dependent or internal variables.

Discussion and Summary

Data science has emerged as a multifaceted tool that can be

used to advance various aspects of Nitinol implant design

and simulation. We reviewed some of the recent advances

in the field and provided a perspective on adapting this tool

for various scenarios such as cardiovascular implant

deformation characterization, durability prediction, and

constitutive modeling. This paradigm shift to data-driven

methods is radical and it can be facilitated by adapting a

tiered approach. As an example, we propose a three-tier

approach:

1. Information tier methods for acquiring data on the

deformation of implants and methods for quantifying

uncertainty in the data. The purpose of these methods

is to collect data to be used in the approaches in the

two tiers below. The emphasis on uncertainty quan-

tification is to make sure that the credibility informa-

tion becomes an integral part of any data-driven

method development.

2. Knowledge tier methods to enable fusion of data from

multiple sources to develop descriptive and predictive

models for phenomena such as fatigue. Typically the

data are combined from multiple experimental meth-

ods such as microstructural characterization, tensile

testing, and fatigue testing or from experimental and

simulation methods. It is common to analyze a specific

aspect of a deformation phenomenon in a reductionist

sense using data from a single experimental method.

The purpose of methods in this tier is to combine or

augment data to promote a holistic analysis of the

deformation phenomenon.

3. Prediction tier methods to develop data-driven models

for stress–strain response or fatigue resistance of

Nitinol implants. These methods rely on data acquired

and assimilated using methods in the information and

knowledge tier and sequence-learning and regression

methods collectively known as machine learning or

deep learning. The purpose of these methods is to

increase the speed and accuracy of Nitinol deformation

simulation.

Many of the concepts described in these tiers may seem

abstract or demanding in resources. But, there are implant-

scale design and simulation activities that are already sui-

ted for adaption of these methods. One concrete example of

a design activity that can benefit from this method is the

probabilistic assessment of durability of medical devices.

Consider a medical device that is subjected to a distribution

of boundary conditions that are determined using literature

data or animal, cadaver, and patient studies. A test protocol

can be constructed to load the device per those boundary

conditions. The cyclic strain distribution, typically used to

construct a fatigue safety factor distribution, can be directly

measured on the device surface using methods described in

Sect. ‘‘Methods to Acquire Data and Quantify Uncertainty

in the Data’’. Using 3D characterization methods such as

computed tomography, a 3D model of the device can be

constructed and the dimensional distribution can be con-

structed by characterizing a number of devices from vari-

ous manufacturing lots. The input distribution of material

parameters can be determined by testing the Nitinol raw

material from multiple lots used to manufacture the device.

A simulation of the device loading can be constructed

using these data and the data-driven simulation methods

described above. These methods will capture the nuances

of the material behavior measured in the tests including

intermediate phase transformation and transformation pla-

teau hardening. The simulations can be used to augment

the fatigue safety factor distribution. These data on the

experimentally measured and simulated fatigue safety

factor distribution and the uncertainty in them can be used

in the probabilistic durability assessment of the device.

While this approach is attractive in augmenting our

holistic understanding of Nitinol deformation phenomena,

for advancing our predictive capabilities for Nitinol

deformation simulation, and for making design exercises

more efficient as described in the example above, there are

conceptual and practical limitations to its adaption. These

limitations must be understood so that we can set realistic

expectations about the adaption of these methods and

gradually overcome these limitations. The full-field

experimental methods such as digital image correlation

described in Sect. ‘‘Methods to Acquire Data and Quantify

Uncertainty in the Data’’ are capital-intensive to set up and
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technically demanding to use. This is particularly true for

applying them to small specimens such as a typical Nitinol

stent or for specimen geometries that make it difficult to

get a line of sight on the area of interest such as a valve

frame with a non-cylindrical shape. Improvement in optics

and image data processing techniques are making the use

of less sophisticated hardware more feasible, potentially

alleviating the operator effort in recording the deformation

data. The predictive fatigue modeling approach described

in Sect. ‘‘Methods to Fuse Data and Uncover Mechanisms’’

can be efficiently adapted if we prioritize the gaps in our

current understanding of fatigue. The effect of pre-defor-

mation on fatigue of Nitinol raw materials is well-docu-

mented but its utility is ambiguous [85, 86]. A holistic

device-level model developed using the approach descri-

bed in Sect. ‘‘Methods to Fuse Data and Uncover Mecha-

nisms’’ can lead to a useful guidance to the device design

community. Incorporation of effects such as the fatigue of

Nitinol that has undergone various cold-working sequen-

ces, or Nitinol with ternary elemental additions, or Nitinol

composites such as core-shell architectures is certainly

more challenging. Those challenges can be tackled as the

methods to acquire and fuse data become more efficient.

The practicality of data fusion depends on the speed with

which the experimental or simulation input data can be

gathered. The uncertainty in the fused data and predictions

made using that data depend on the uncertainty in the

individual data sources. The data fusion approach descri-

bed here can only be practically implemented using

information systems concepts such as knowledge gradient

[87–89] that enable optimizing data collection to maximize

the amount of information collected. These approaches to

maximize information from a limited number of experi-

ments can benefit the training of data-based constitutive

methods reviewed in this work. The sequence-learning

methods described in Sect. ‘‘Methods to Make Data-Driven

Predictions of Nitinol Deformation Response’’ for devel-

oping data-driven models for the simulation of Nitinol

deformation are maturing fast and readily available. Yet,

the rate at which new concepts are introduced in the field,

the changes in the terminology, and the changes to the

available software implementations of the machine learn-

ing methods can pose challenges to the engineers imple-

menting these data-driven models.

Overcoming these challenges and overcoming the

practical limitations to the adaption of these methods will

require the collective effort of the community. Consensus-

building will be useful in encouraging participation in this

effort. The key concepts, new outcomes, and best practices

in these data-driven methods can be discussed at confer-

ences such as the Shape Memory and Superelastic Tech-

nologies Conference (SMST), the Cardiovascular Implant

Durability Conference (CVID), and the ASTM Committee

Weeks to develop community-wide awareness and to

promote discussion. The methods can be discussed in

working groups modeled after efforts such as Best Prac-

tices for Fatigue Assessment of Heart Valve Devices

organized by the Heart Valve Collaboratory and consensus

best practices may be published. Some of these methods

can be standardized through collaboratively developed

ASTM standards. The industry participation will also be

encouraged if additional research demonstrating proof-of-

concept implementation of some of these methods for

Nitinol becomes available. These methods inherently

depend on customized software tools. Publication of such

data science software in open source repositories will

reduce duplication of effort across various stakeholders and

reduce the overall effort required to adapt these tools. With

broad collaboration between various stakeholders, we hope

these data-based methods mature quickly and play a central

role in the design and simulation of Nitinol cardiovascular

implants.
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2. Arróyave R, McDowell DL (2019) Systems approaches to

materials design: past, present, and future. Annu Rev Mater Res

49:103–126

3. Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based

shape memory alloys. Progress Mater Sci 50:511–678

4. Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M

(2004) Structural and functional fatigue of NiTi shape memory

alloys. Mater Sci Eng A 378:24–33

5. Robertson SW, Pelton AR, Ritchie RO (2012) Mechanical fatigue

and fracture of Nitinol. Int Mater Rev 57:1–37

6. Bhattacharya K (2004) Microstructure of martensite: why it

forms and how it gives rise to the shape-memory effect. Oxford

series on materials modelling. Oxford University Press, Oxford

7. Paranjape HM, Bowers ML, Mills MJ, Anderson PM (2017)

Mechanisms for phase transformation induced slip in shape

memory alloy micro-crystals. Acta Mater 132:444–454

Shap. Mem. Superelasticity

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


8. Reinholz B, Brinckmann S (2012) Phase transformations in the

proximity of TiC precipitates in a NiTi matrix during fatigue. Int

J Fatigue 41:72–82

9. Auricchio F, Taylor R, Lubliner J (1997) Shape-memory alloys:

macromodeling and numerical simulations of superelastic

behavior. Comput Methods Appl Mech Eng 146:281–312

10. Cisse C, Zaki W, Ben Zineb T (2016) A review of constitutive

models and modeling techniques for shape memory alloys. Int J

Plast 76:244–284

11. Zaki W, Moumni Z (2007) A 3D model of the cyclic thermo-

mechanical behavior of shape memory alloys. J Mech Phys

Solids 55:2427–2454

12. Zaki W, Zamfir S, Moumni Z (2010) An extension of the ZM

model for shape memory alloys accounting for plastic deforma-

tion. Mech Mater 42:266–274

13. Wang J, Moumni Z, Zhang W, Xu Y, Zaki W (2017) A 3D finite-

strain-based constitutive model for shape memory alloys

accounting for thermomechanical coupling and martensite reori-

entation. Smart Mater Struct 26:065006

14. Peultier B, Ben Zineb T, Patoor E (2006) Macroscopic consti-

tutive law of shape memory alloy thermomechanical behaviour.

Application to structure computation by FEM. Mech Mater

38:510–524

15. ASME (2018) Assessing credibility of computational modeling

through verification and validation: application to medical devi-

ces, technical report

16. Administration UFaD (2022) Assessing the credibility of com-

putational modeling and simulation in medical device submis-

sions. https://www.fda.gov/regulatory-information/search-fda-

guidance-documents/assessing-credibility-computational-model

ing-and-simulation-medical-device-submissions. Accessed 15

Dec 2022

17. Delpueyo D, Jury A, Balandraud X, Grédiac M (2021) Applying
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