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QUANTIFYING AND PROPAGATING UNCERTAINTY IN 
SUPERELASTICITY SIMULATION INPUTS
Digital image correlation data and Bayesian inference used together facilitate rigorous 
quantification of the uncertainty in material input parameters for finite element 
simulations of superelastic deformation.
Harshad M. Paranjape,* Confluent Medical Technologies Inc., Fremont, California
Kenneth I. Aycock, Jason D. Weaver, and Brent A. Craven, U.S. Food and Drug Administration, 
    Center for Devices and Radiological Health, O!ice of Science and Engineering Laboratories, 
    Division of Applied Mechanics, Silver Spring, Maryland
Craig Bonsignore,* First Article Services LLC, Phoenix, Arizona
Thomas W. Duerig, FASM,* Starlight Cardiovascular, San Diego, California

Computer simulations using methods such as finite 
element analysis (FEA) play an important role in the 
design of implantable medical devices that are man-

ufactured from superelastic materials like nickel-titanium 
(NiTi) shape memory alloys (SMA). The simulations are typ-
ically performed in a specific context of use, for example, 
durability assessment of a device under a particular anatom-
ical boundary condition. A topic of emerging importance to 
NiTi simulation is the assessment and reporting of the credi-
bility of a computational model for its context of use[1,2]. This 
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credibility assessment generates evidence supporting the 
use of a computational model for decision making. More-
over, higher model credibility enables medical device man-
ufacturers to use modeling for higher risk and higher impact 
contexts of use. As part of credibility activities, quantification 
and propagation of the uncertainty in material parameter in-
puts increases overall model credibility by providing conser-
vative bounds on the uncertainty in model predictions.

A recent work by the authors implemented a method 
to determine the material parameter inputs and their un-
certainty for a computational model of the superelastic de-
formation of NiTi[3]. The material property determination is 
colloquially referred to as model calibration. This method 
for superelastic model calibration is unique in that it has 
uncertainty quantification built in, it uses full-field surface 
strain data together with global load data as inputs, and it is 
able to furnish both tensile and compressive plateau stress 
material properties from a single test.

CALIBRATION FRAMEWORK
A flowchart summarizing the material property deter-

mination method is shown in Fig. 1. The method essentially 
has three components: (1) a standard tensile test specimen 
geometry and a test protocol to obtain the surface strain 
fields in the test specimen using digital image correlation 
(DIC); (2) a library of simulations of the tensile test specimen 
loading protocol using a range of material parameter input 
values; and (3) a data-processing method using Bayesian In-
ference (BI) to minimize a cost function based on the local 
strain and global load measured experimentally and simu-
lated in the simulation library.

The calibration scheme is demonstrated on a Ti-50.8 
at.%Ni superelastic NiTi sheet material and the superelastic 
constitutive model implemented in the Abaqus finite ele-
ment framework[4]. The typical stress-strain response for the 

FEATURE

Fig. 1 — A flowchart summarizing the material property determi-
nation method. MAP stands for maximum a posteriori. Reproduced 
from Paranjape et al.[3].
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NiTi material is shown in Fig. 2a and the 
six material property inputs for the super-
elastic model in Abaqus—austenite and 
martensite loading slopes (EA and EM), 
tensile plateau stresses (VUPS and VLPS), 
compressive plateau stress (VCPS), and 
transformation strain (Ht)—are annotated 
in the stress-strain curve. A standard dia-
mond specimen geometry is used. When 
a diamond specimen is loaded in the 
deformation sequence shown in Fig. 2b, 
its struts are subject to bending, and the 
specimen thus exhibits both tensile and 
compressive strains as reflected in the 
shear strains shown in Fig. 2c. The sur-
face strains are experimentally measured 
using a single-camera DIC setup.

A computational model of the dia- 
mond geometry shown in Fig. 2a is 
built in Abaqus, and the superelas- 
tic constitutive material model and the 
loading path shown in Fig. 2b are ap-
plied. A simulation library is constructed 
by instantiating the model 544 times with 
varied material parameter inputs. Specif-
ically, the six material parameters are var-
ied such that they span the typical range 
of values observed in commercially rele-
vant NiTi. From each simulation result, a 
quantity of interest (QoI) is defined based 
on: (1) the local strain values at points 
1 to 4 shown in Fig. 2c and (2) the glob-
al load values in the loading direction 
at 22 equidistant points on the loading 
path A-B-C shown in Fig. 2b. A regression 
model is fitted using the support vector machine (SVM) ma-
chine learning (ML) method that takes a set of six material 
parameters as inputs and furnishes the QoI values. Given an 
experimental dataset consisting of QoIs listed above and the 
trained SVM model that estimates the simulated QoIs, the 
optimum material parameters are determined using the BI 
method, which is a statistical method of determining proba-
bility of a hypothesis based on available data. The numerical 
determination of the Abaqus material parameter probability 
distributions is performed using Markov Chain Monte Car-
lo (MCMC) sampling[5]. In summary, given an experimental 
dataset consisting of local surface strain and global load 
data from a tensile test and a simulation library built from 
a model of the experimental protocol, the method furnishes 
the probability distributions for the six key material param-
eters for the superelastic constitutive model in Abaqus. The 
uncertainty in the determined material properties can be 
quantified from the width of the probability distribution and 
is expressed in terms of credibility intervals.

CALIBRATION RESULTS USING GLOBAL LOAD 
AND LOCAL STRAIN DATA

Sample results for material parameter determination 
using the BI method are shown in Fig. 3. The probability dis-
tributions for the six material parameters are given in Fig. 3a, 
where the median parameters (dashed lines) and the 95% 
credibility intervals (gray highlights) are annotated. A com-
parison of the simulated load-displacement curve obtained 
from the median material parameters and the experimental 
input data is provided in Fig. 3b. A comparison between the 
simulated surface strain distribution in the diamond speci-
men model using the median material parameters and the 
DIC measurement of the surface strains at peak load is shown 
in Fig. 3c. The qualitative agreement between the simulated 
curve from the calibrated model and the experimental input 
is reasonable. Quantitatively, the error between the simula-
tion and the experiment is 17.3% when calculated in terms 
of the mean absolute percent error (MAPE).

Fig. 2 — A summary of the test protocol: (a) diamond specimen geometry and a schematic 
of the superelastic stress-strain response; Y is the sheet rolling direction; (b) schematic of the 
loading sequence used in the test protocol; and (c) surface strain map of diamond at peak 
load measured using DIC. Adapted from Paranjape et al.[3].

Fig. 3 — Sample results of the calibration method. (a) Probability distribution of determined 
material parameters. (b) Comparison of experimental load-displacement data and simula-
tion results from the determined parameters. (c) A comparison of experimental and simula-
tion data for surface shear strain. Adapted from Paranjape et al.[3].

(a) (b) (c)

(a) (c)

(b)
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The ratio of compressive plateau stress (VCPS) to the ten-
sile plateau stress (VUPS) in the sample result above is approx-
imately 1.0. This is a reasonable number for a typical NiTi 
sheet material that has a strong < 1 1 0 > texture component.

PROPAGATION OF MATERIAL PROPERTY 
UNCERTAINTY TO SIMULATIONS OF CYCLIC LOADING

Here, an example of propagating the uncertainty in 
the material parameters determined using the BI method 
is demonstrated using a simulation of NiTi fatigue loading. 
The material parameter probability distributions shown in 
the sample results above are used in a simulation of cyclic 
loading of the diamond-shaped NiTi specimen introduced in 
Fig. 1a. The cyclic loading path is shown in Fig. 4a and the 
extrema of the cyclic loading path are annotated by labels 
D and E. The commonly used fatigue indicator parameters 
for NiTi—mean strain and strain amplitude—are calculated 
using the tensor method[6]. A scatter plot of strain ampli-
tude vs. mean strain obtained from a simulation is shown in 
Fig. 4b. Fatigue safety factors are typically estimated using 
the mean strain and strain amplitude at the critical point in 
the model. In this example, the critical point is taken as the 
point where the largest strain amplitude occurs. The critical 
point is shown by a red square in Fig. 4b. A series of simula-
tions with material parameters in the 95% credible intervals 
of the material parameter distributions shown in the sample 
result above are carried out and probability distributions are 
constructed from the mean strain and the strain amplitude 

at the critical point in each simulation. 
These probability distributions are shown 
in Figs. 4c and d. The strain amplitude 
shows a range of approximately 0.007, 
which may translate to a large uncertain-
ty in the fatigue safety factor calculated 
using these strain amplitude data.

CONCLUSIONS
In this article, the authors have de-

veloped and described the implemen-
tation of a method for determining the 
material parameter inputs to the su-
perelastic constitutive model for nick-
el-titanium with their accompanying 
uncertainty. The inputs to the method 
are surface full-field strain data and glob-
al load data obtained from one or more 
tensile tests on an appropriate specimen 
and a simulation library that provides a 
dataset with various combinations of ma-
terial parameter inputs and correspond-
ing strain and load outputs. This method 
uses Bayesian Inference to obtain a prob-
ability distribution of the input parame-
ters. The numerical implementation of 

the method uses Markov Chain Monte Carlo sampling ac-
celerated by a machine learning method that augments the 
results obtained from the simulation library. There are four 
main benefits of this model calibration method:
i. The probability distribution of the material parameters 
determined using this method automatically furnishes a 
quantification of uncertainty in the parameters. The uncer-
tainty can be communicated using measures such as cred-
ible intervals.
ii. The uncertainty in the material parameters can be prop-
agated to subsequent simulations such as simulation of fa-
tigue loading of NiTi samples.
iii. The diamond specimen geometry used in this method 
enables determination of tensile as well as compressive pla-
teau stresses from a single test.
iv. The machine learning element of this method allows 
use of a relatively small simulation library compared to per-
forming calibration without such library augmentation.

This is a versatile method in the sense that it can be 
applied to any constitutive model implemented in finite ele-
ment solvers. The statistical methods such as Markov Chain 
Monte Carlo sampling used in this scheme are implemented 
in a wide variety of software tools such as Matlab and Py-
thon. While the overall accuracy of the simulation results 
primarily depends on the accuracy of the underlying con-
stitutive model, methods such as these can help quantify, 
communicate, and propagate uncertainty in the simulation 

FEATURE

Fig. 4 — Propagation of uncertainty in material parameters to a simulation of cyclic loading: 
(a) cyclic loading path; (b) strain map obtained using a fatigue simulation; and (c, d) probabil-
ity distribution of mean strain and strain amplitude respectively at the critical point obtained 
from a series of simulations. Adapted from Paranjape et al.[3].

(a) (b)

(c) (d)
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inputs. A wide adaption of methods such as these can help 
make the paradigm of using a risk-informed approach for in-
corporating computer simulation results in the design and 
performance evaluation of nickel-titanium-based implant-
able medical devices a standard practice.

Notes
This article is based on the authors’ work, Reference 3, 

which is licensed under the CC BY license (creativecommons.
org/licenses/by/4.0/).

The findings and conclusions in this article have not 
been formally disseminated by the U.S. FDA and should not 
be construed to represent any agency determination or pol-
icy. The mention of commercial products, their sources, or 
their use in connection with material reported herein is not 
to be construed as either an actual or implied endorsement 
of such products by the Department of Health and Human 
Services. ~SMST

For more information: Harshad M. Paranjape, principal 
research engineer, Confluent Medical Technologies Inc., 
47533 Westinghouse Dr., Fremont, CA 94539, 510.683.2184, 
harshad.paranjape@confluentmedical.com.
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