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QUANTIFYING AND PROPAGATING UNGERTAINTYIN
SUPERELASTICITY SIMULATION INPUTS

Digital image correlation data and Bayesian inference used together facilitate rigorous
quantification of the uncertainty in material input parameters for finite element

simulations of superelastic deformation.

Harshad M. Paranjape,” Confluent Medical Technologies Inc., Fremont, California

Kenneth I. Aycock, Jason D. Weaver, and Brent A. Craven, U.S. Food and Drug Administration,
Center for Devices and Radiological Health, Office of Science and Engineering Laboratories,
Division of Applied Mechanics, Silver Spring, Maryland

Craig Bonsignore,” First Article Services LLC, Phoenix, Arizona

Thomas W. Duerig, FASM,* Starlight Cardiovascular, San Diego, California

element analysis (FEA) play an important role in the

design of implantable medical devices that are man-
ufactured from superelastic materials like nickel-titanium
(NiTi) shape memory alloys (SMA). The simulations are typ-
ically performed in a specific context of use, for example,
durability assessment of a device under a particular anatom-
ical boundary condition. A topic of emerging importance to
NiTi simulation is the assessment and reporting of the credi-
bility of a computational model for its context of usel*?. This

Computer simulations using methods such as finite
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Fig. 1 — A flowchart summarizing the material property determi-
nation method. MAP stands for maximum a posteriori. Reproduced
from Paranjape et al.B.
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credibility assessment generates evidence supporting the
use of a computational model for decision making. More-
over, higher model credibility enables medical device man-
ufacturers to use modeling for higher risk and higher impact
contexts of use. As part of credibility activities, quantification
and propagation of the uncertainty in material parameter in-
puts increases overall model credibility by providing conser-
vative bounds on the uncertainty in model predictions.

A recent work by the authors implemented a method
to determine the material parameter inputs and their un-
certainty for a computational model of the superelastic de-
formation of NiTi®. The material property determination is
colloquially referred to as model calibration. This method
for superelastic model calibration is unique in that it has
uncertainty quantification built in, it uses full-field surface
strain data together with global load data as inputs, and it is
able to furnish both tensile and compressive plateau stress
material properties from a single test.

CALIBRATION FRAMEWORK

A flowchart summarizing the material property deter-
mination method is shown in Fig. 1. The method essentially
has three components: (1) a standard tensile test specimen
geometry and a test protocol to obtain the surface strain
fields in the test specimen using digital image correlation
(DIC); (2) a library of simulations of the tensile test specimen
loading protocol using a range of material parameter input
values; and (3) a data-processing method using Bayesian In-
ference (BI) to minimize a cost function based on the local
strain and global load measured experimentally and simu-
lated in the simulation library.

The calibration scheme is demonstrated on a Ti-50.8
at.%Ni superelastic NiTi sheet material and the superelastic
constitutive model implemented in the Abaqus finite ele-
ment framework!. The typical stress-strain response for the



NiTi material is shown in Fig. 2a and the
six material property inputs for the super-
elastic model in Abaqus—austenite and
martensite loading slopes (E, and E,),
tensile plateau stresses (o, and o),
compressive plateau stress (o), and
transformation strain (¢ )—are annotated
in the stress-strain curve. A standard dia-
mond specimen geometry is used. When
a diamond specimen is loaded in the
deformation sequence shown in Fig. 2b,
its struts are subject to bending, and the
specimen thus exhibits both tensile and
compressive strains as reflected in the
shear strains shown in Fig. 2c. The sur-
face strains are experimentally measured
using a single-camera DIC setup.

A computational model of the dia-
mond geometry shown in Fig. 2a is
built in Abaqus, and the superelas-
tic constitutive material model and the
loading path shown in Fig. 2b are ap-
plied. A simulation library is constructed
by instantiating the model 544 times with
varied material parameter inputs. Specif-
ically, the six material parameters are var-
ied such that they span the typical range
of values observed in commercially rele-
vant NiTi. From each simulation result, a
quantity of interest (Qol) is defined based
on: (1) the local strain values at points
1 to 4 shown in Fig. 2c and (2) the glob-
al load values in the loading direction
at 22 equidistant points on the loading
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Fig. 2 — A summary of the test protocol: (a) diamond specimen geometry and a schematic
of the superelastic stress-strain response; Y is the sheet rolling direction; (b) schematic of the
loading sequence used in the test protocol; and (c) surface strain map of diamond at peak
load measured using DIC. Adapted from Paranjape et al.t.
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Fig. 3 — Sample results of the calibration method. (a) Probability distribution of determined
material parameters. (b) Comparison of experimental load-displacement data and simula-
tion results from the determined parameters. (c) A comparison of experimental and simula-
tion data for surface shear strain. Adapted from Paranjape et al.?.

path A-B-C shown in Fig. 2b. A regression

model is fitted using the support vector machine (SVM) ma-
chine learning (ML) method that takes a set of six material
parameters as inputs and furnishes the Qol values. Given an
experimental dataset consisting of Qols listed above and the
trained SVM model that estimates the simulated Qols, the
optimum material parameters are determined using the BI
method, which is a statistical method of determining proba-
bility of a hypothesis based on available data. The numerical
determination of the Abaqus material parameter probability
distributions is performed using Markov Chain Monte Car-
lo (MCMC) sampling®. In summary, given an experimental
dataset consisting of local surface strain and global load
data from a tensile test and a simulation library built from
a model of the experimental protocol, the method furnishes
the probability distributions for the six key material param-
eters for the superelastic constitutive model in Abaqus. The
uncertainty in the determined material properties can be
quantified from the width of the probability distribution and
is expressed in terms of credibility intervals.

CALIBRATION RESULTS USING GLOBAL LOAD
AND LOCAL STRAIN DATA

Sample results for material parameter determination
using the Bl method are shown in Fig. 3. The probability dis-
tributions for the six material parameters are given in Fig. 3a,
where the median parameters (dashed lines) and the 95%
credibility intervals (gray highlights) are annotated. A com-
parison of the simulated load-displacement curve obtained
from the median material parameters and the experimental
input data is provided in Fig. 3b. A comparison between the
simulated surface strain distribution in the diamond speci-
men model using the median material parameters and the
DIC measurement of the surface strains at peak load is shown
in Fig. 3c. The qualitative agreement between the simulated
curve from the calibrated model and the experimental input
is reasonable. Quantitatively, the error between the simula-
tion and the experiment is 17.3% when calculated in terms
of the mean absolute percent error (MAPE).
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Mean D 0.02 at the critical point in each simulation.
« ° These probability distributions are shown
So.015 in Figs. 4c and d. The strain amplitude
) é. shows a range of approximately 0.007,
S s 001 which may translate to a large uncertain-
E i 'g 0.005 ty in the fatigue safety factor calculated

‘W’ n using these strain amplitude data.
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Fig. 4 — Propagation of uncertainty in material parameters to a simulation of cyclic loading:
(a) cyclic loading path; (b) strain map obtained using a fatigue simulation; and (c, d) probabil-
ity distribution of mean strain and strain amplitude respectively at the critical point obtained

from a series of simulations. Adapted from Paranjape et al.=.

The ratio of compressive plateau stress (c,,) to the ten-
sile plateau stress (5, ,,.) in the sample result above is approx-
imately 1.0. This is a reasonable number for a typical NiTi
sheet material that has a strong <1 1 0 > texture component.

PROPAGATION OF MATERIAL PROPERTY
UNCERTAINTY TO SIMULATIONS OF CYCLIC LOADING

Here, an example of propagating the uncertainty in
the material parameters determined using the Bl method
is demonstrated using a simulation of NiTi fatigue loading.
The material parameter probability distributions shown in
the sample results above are used in a simulation of cyclic
loading of the diamond-shaped NiTi specimen introduced in
Fig. 1a. The cyclic loading path is shown in Fig. 4a and the
extrema of the cyclic loading path are annotated by labels
D and E. The commonly used fatigue indicator parameters
for NiTi—mean strain and strain amplitude—are calculated
using the tensor method®. A scatter plot of strain ampli-
tude vs. mean strain obtained from a simulation is shown in
Fig. 4b. Fatigue safety factors are typically estimated using
the mean strain and strain amplitude at the critical point in
the model. In this example, the critical point is taken as the
point where the largest strain amplitude occurs. The critical
point is shown by a red square in Fig. 4b. A series of simula-
tions with material parameters in the 95% credible intervals
of the material parameter distributions shown in the sample
result above are carried out and probability distributions are
constructed from the mean strain and the strain amplitude

dataset with various combinations of ma-
terial parameter inputs and correspond-
ing strain and load outputs. This method
uses Bayesian Inference to obtain a prob-
ability distribution of the input parame-
ters. The numerical implementation of
the method uses Markov Chain Monte Carlo sampling ac-
celerated by a machine learning method that augments the
results obtained from the simulation library. There are four
main benefits of this model calibration method:

i.  The probability distribution of the material parameters
determined using this method automatically furnishes a
quantification of uncertainty in the parameters. The uncer-
tainty can be communicated using measures such as cred-
ible intervals.

ii. Theuncertainty in the material parameters can be prop-
agated to subsequent simulations such as simulation of fa-
tigue loading of NiTi samples.

iii. The diamond specimen geometry used in this method
enables determination of tensile as well as compressive pla-
teau stresses from a single test.

iv. The machine learning element of this method allows
use of a relatively small simulation library compared to per-
forming calibration without such library augmentation.

This is a versatile method in the sense that it can be
applied to any constitutive model implemented in finite ele-
ment solvers. The statistical methods such as Markov Chain
Monte Carlo sampling used in this scheme are implemented
in a wide variety of software tools such as Matlab and Py-
thon. While the overall accuracy of the simulation results
primarily depends on the accuracy of the underlying con-
stitutive model, methods such as these can help quantify,
communicate, and propagate uncertainty in the simulation



inputs. A wide adaption of methods such as these can help
make the paradigm of using a risk-informed approach for in-
corporating computer simulation results in the design and
performance evaluation of nickel-titanium-based implant-
able medical devices a standard practice.

Notes

This article is based on the authors’ work, Reference 3,
whichis licensed under the CC BY license (creativecommons.
org/licenses/by/4.0/).

The findings and conclusions in this article have not
been formally disseminated by the U.S. FDA and should not
be construed to represent any agency determination or pol-
icy. The mention of commercial products, their sources, or
their use in connection with material reported herein is not
to be construed as either an actual or implied endorsement
of such products by the Department of Health and Human
Services.

For more information: Harshad M. Paranjape, principal
research engineer, Confluent Medical Technologies Inc.,
47533 Westinghouse Dr., Fremont, CA 94539, 510.683.2184,
harshad.paranjape@confluentmedical.com.
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