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A B S T R A C T

We implement an approach using Bayesian inference and machine learning to calibrate the material parameters
of a constitutive model for the superelastic deformation of NiTi shape memory alloy. We use a diamond-shaped
specimen geometry that is suited to calibrate both tensile and compressive material parameters from a single test.
We adopt the Bayesian inference calibration scheme to take full-field surface strain measurements obtained using
digital image correlation together with global load data as an input for calibration. The calibration is performed
by comparing these two experimental quantities of interest with the corresponding results from a simulation li-
brary built with the superelastic forward finite element model. We present a machine learning based approach
to enrich the simulation library using a surrogate model. This improves the calibration accuracy to the extent
permitted by the accuracy of the underlying material model and also improves the computational efficiency. We
demonstrate, verify, and partially validate the calibration results through various examples. We also demonstrate
how the uncertainty in the calibrated superelastic material parameters can propagate to a subsequent simulation
of fatigue loading. This approach is versatile and can be used to calibrate other models of superelastic deforma-
tion from data obtained using various modalities. This probabilistic calibration approach can become an integral
part of a framework to assess and communicate the credibility of simulations performed in the design of super-
elastic NiTi articles such as medical devices. The knowledge obtained from this calibration approach is most ef-
fective when the limitations of the underlying model and the suitability of the training data used to calibrate the
model are understood and communicated.

1. Introduction

Simulation of the thermo-mechanical response of Nickel-Titanium
(NiTi) shape memory alloys (SMAs) remains a topic of significant in-
terest in the scientific community and in engineering practice. The rea-
son for scientific interest in NiTi simulation is due to the challenges
posed by the multi-scale microstructure, highly non-linear and inelas-
tic constitutive response, anisotropy of the material properties, and the
asymmetry in tension vs. compression response. The engineering inter-
est in NiTi simulation is due to the extensive use of superelastic NiTi
in the manufacturing of medical implants and devices and due to the
strong potential of shape memory NiTi as an actuator material in the
aeronautics industry. When computational methods are used to simulate
NiTi response in these fields, a model is typically used to predict either
global quantities of interest such as the radial force of a stent or the ac-
tuation load of a spring actuator, or to obtain local quantities of inter

est such as the local strain distribution in an implant under physiological
boundary conditions. These quantities of interest are then leveraged for
some specific context of use (e.g., as part of the performance or durabil-
ity assessment).

As with the broader simulation community, a topic of emerging im-
portance to NiTi simulation is the necessity to quantify and report the
credibility of any computational modeling that is performed for a spe-
cific context of use [1]. Organizations in both medical device and aero-
nautics communities recognize that simulation will play an increasingly
prominent role in decision making throughout the lifecycle of a par-
ticular product. They identify credibility assessment of the models and
uncertainty quantification of the simulation results as a key compo-
nent of the future development in the simulation practices. Morrison et
al. note that sufficiently-credible computational modeling evidence can
act as a support in the regulatory applications of medical devices [2].
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NASA Vision 2040 report specifically incorporates uncertainty quantifi-
cation as a key focus area [3].

The simulated response from any computational model is influenced
by the material parameters used as constitutive model inputs. As a con-
sequence, the credibility of simulation results is affected by the specific
values and the uncertainty of the material parameters that are used.
The material parameters for a particular computational model are gener-
ally calibrated by comparing experimental measurements (e.g., load or
strain) with computational simulations of the experiment. While ad hoc
or trial-and-error approaches are the most common, recently, various ef-
forts have employed statistical or probabilistic methods such as Bayesian
inference (BI) to solve the inverse problem of calibrating the material
parameters [4]. The benefit of probabilistic methods over deterministic
optimizations schemes for calibration (e.g., finite element model updat-
ing, gap method, virtual fields method) is that the probabilistic meth-
ods inherently furnish uncertainty information about the fitted parame-
ters, rather than simply providing the optimum parameters. Gogu et
al. presented a BI approach for the determination of macroscopic elas-
tic stiffness of truss-type metallic structure [5]. Liu and Au used BI to
determine the material parameters of a phenomenological elasto-plas-
tic model for the hysteretic load–displacement response of a compos-
ite material [6]. Castillo and Kalidindi reported a calibration method
based on BI to determine the single crystal elastic constants of metal-
lic materials using indentation load–displacement data [7]. Ricciardi et
al. demonstrated the calibration of a crystal plasticity model using a BI
approach [8]. Two efforts in the literature have specifically applied BI
to the calibration of NiTi SMA constitutive model properties. Crews and
Smith used BI to estimate the material parameters of a phenomenolog-
ical model for actuation response of NiTi due to the shape memory ef-
fect [9]. Honarmandi et al. presented another example of calibration of
a model for shape memory effect in NiTi [10]. These two examples ad-
dressed the calibration of models to simulate the thermally-induced re-
sponse of NiTi and not the superelastic response. A common aspect to
the examples cited above is that they used a single experimental com-
parator (e.g., global load data) to arrive at the calibrated material para-
meters.

Generally, there is a threefold reason to perform calibration using a
relatively large comparator data set. First, the uncertainty in the cali-
brated material properties reduces as the experimental sample size in-
creases. Second, a larger sample size reduces the effect of any prior as-
sumptions made related to the distribution of material parameters. In
the context of BI, this phenomenon is sometimes referred to as the data
overwhelming the prior. Third, a model calibration performed using a sin-
gle comparator such as the global load may furnish material parameters
that are optimized to give the correct load response. However, when the
same model is used in another context of use (e.g., to simulate the local
strains), then the predictions using the optimum parameters may signif-
icantly deviate from the expected response in terms of the quantity of
interest. The first two concerns noted here can be simply addressed by
performing a large number of experiments and using a larger number
of observations to perform the calibration. However, the third concern
can be alleviated by using a variety of comparators obtained using dif-
ferent experimental modalities to perform the calibration. One approach
to obtain a large quantity of comparator data other than load is to use
full-field surface strain measurements on the test samples and using the
strain field in the calibration process [11]. Digital image correlation
(DIC) is a versatile method to obtain full-field surface strain data dur-
ing tensile testing of materials. Rethore presented a general strategy for
identifying material parameters from full-field displacement data [12].
Bertin et al. presented an example of a DIC-based constitutive model cal-
ibration approach where they developed a method to determine crystal
plasticity parameters from small-scale DIC measurements [13].

While it is appealing to use BI on large comparator sample sizes or
with comparator data from multiple sources, there is a practical limi-
tation. Material property calibration using BI is typically implemented
using a sampling method such as Markov Chain Monte Carlo. A reliable
distribution of the calibrated material parameters is obtained by per-
forming this sampling thousands of times with varying material para-
meters and comparing the predictions of the forward simulation in each
step with the appropriate comparator. Performing simulations on-line
during the sampling process is quite impractical, particularly when the
constitutive response is highly non-linear such as in the case of NiTi
alloys. A more tractable solution to this problem is to create a library
of simulations beforehand with the input parameters spanning a rea-
sonable parameter space. Then, during each sampling step this library
can be queried to obtain the simulation results for the closest available
material parameters in the library. This approach may work well when
a small library is adequate. However, if a large number of parameters
need to be calibrated, then the size of the library needed can be quite
large. Alternately, this problem can be addressed by developing a sur-
rogate forward model that can efficiently furnish the simulation results
for any input material parameters. Recently, a few efforts have used ma-
chine learning (ML) to develop a surrogate model to speed up material
model calibration. Wu et al. used neural networks to speed-up the cali-
bration of a homogenized elasto-plastic model for composites [14]. Lu
et al. used deep learning to determine elasto-plastic material properties
using indentation comparator data [15]. However, they did not use BI
to determine parameter calibration uncertainties.

In summary, BI is a useful approach to determine constitutive model
parameters and associated uncertainties. It is desirable to use
multi-modal experimental data such as full-field strain data together
with load data as a comparator. ML can be used to accelerate the BI
parameter determination through the generation of a regression model
that acts as a surrogate to the original constitutive model. To our knowl-
edge, there is not an effort in the literature consisting of these three
components to calibrate inelastic models in general and particularly the
computational models for superelastic NiTi. Thus, we address this gap
by implementing a combined BI and ML approach to calibrate and op-
timize superelastic NiTi constitutive model parameters from load and
full-field surface strain data. We demonstrate this calibration approach
with the phenomenological superelastic constitutive law implemented in
Abaqus finite element modeling (FEM) framework [16]. However, the
framework presented here is general and can be applied to other models
for superelasticity. In Section 2, we describe the methods used in this
calibration framework. In Section 3, we first present a basic example
of the BI calibration approach when the load–displacement data from a
tension test of NiTi is used as a comparator. We then present a detailed
example demonstrating all elements of the proposed approach. Finally,
we provide an application of this calibration approach. We demonstrate
how the uncertainty in the calibrated material parameters obtained us-
ing BI can be propagated to subsequent simulations performed using
these material properties. In Section 4, we critically assess the advan-
tages and limitations of our approach.

2. Calibration framework

We will first describe the calibration procedure in general. Later, we
will specialize the procedure to the specific phenomenological model for
superelastic deformation of NiTi.

Consider a constitutive law of the form where is the stress,
is the strain, and is a material parameter vector. Let be a

vector of Quantities of Interest (QoI) that can be determined for a spe-
cific deformation geometry and boundary conditions. Here is a para-
meter vector encoding the details such as geometry and boundary con-
ditions that are necessary to calculate . For example, could be the
global load measured during the deformation of a specimen at a fixed
imposed displacement. Or could be the strain tensor at a specific lo
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cation in the specimen at an imposed deformation. Since is based on
the constitutive law, it indirectly depends on . The QoI can either be
measured experimentally ( ) or computationally predicted ( ) us-
ing a model or numerical implementation of the constitutive law
.

The simplest procedure to calibrate a model of (i.e., to deter-
mine parameters ) is to minimize the difference between and

while varying . A typical method to solve this inverse problem is
to perform the minimization:

(1)

Here N is the total number of observations of and is the weight as-
signed to each observation. The objective function on the right hand side
has a quadratic form and thus, we refer to this procedure as least-squares
calibration. While this procedure is straight-forward, it does not furnish
any information about the uncertainty of the calibration. BI on the other
hand, provides a tool to determine and quantify the uncertainty in
the calibration.

The general scheme of our calibration method is shown in Fig. 1. In
the first step of this calibration procedure, we standardize a test speci-
men geometry and a test protocol. Based on these, we can experimen-
tally obtain a number of values. In parallel, we setup a simulation
with the constitutive law , the virtual specimen geometry, and
boundary conditions based on the test protocol. The simulation acts as a
forward model and furnishes a number of values. In the simulation,
we vary the values of the material parameters to span the typical ma-
terial parameter space and obtain the corresponding values. Thus,
we build a simulation library that maps to . In the next step, we
use BI to obtain and their uncertainty. We first describe the BI com-
ponent of this procedure below.

Fig. 1. A summary of the Bayesian Inference material parameter calibration method. A
flowchart listing the key components of the method is shown.

2.1. Bayesian inference for calibration and uncertainty quantification

The probability distribution of the material parameters given a set of
experimentally measured quantities of interest ( or posterior)
can be expressed in terms of the probability distribution of the material
parameters based on prior knowledge ( or prior) and the probabil-
ity of observing an experimental response if the material parame-
ters were actually ( or likelihood) using the Bayes’ theorem

(2)

The denominator, , is a normalization constant and referred to
as the probability of the evidence [17]. In BI, this factor is typically not
calculated and simply .

Bayes’ theorem in the form described above furnishes a probability
distribution of the material parameters given certain experimental data.
The optimum or fitted parameters can be reported from this distribu-
tion in terms of one of the point estimates. Some common point esti-
mates are mean, median, or maximum a posteriori (MAP). The uncer-
tainty in the fitted parameters can be reported in terms of the credible
intervals of the distribution. Credible intervals are the probabilistic sta-
tistics counterpart to the confidence intervals in the frequentist statis-
tics. Thus, uncertainty estimation of calibration is built into this method.
The prior incorporates an expert’s knowledge about the parameter
space for a particular constitutive law. For example, the Young’s modu-
lus of most metals is in the GPa range with a larger probability between
10 to 100 GPa. The likelihood ( ) of observing a particular ex-
perimental response for a given material parameters can be calculated
using a forward model that furnishes as a function of . A simulation
library that maps to across the parameter space can be used to
calculate the likelihood. Thus,

(3)

where c is a constant, w are the weights assigned to the observations,
and is the standard deviation of the lumped error in the experimen-
tal measurements [4]. The exponent in this expression is a loss function
that quantifies the discrepancy between the experimental measurement
and a true response observed for a particular and reaches a maximum
value when the discrepancy between the observed and the true response
is minimum [18]. If multiple independent experimental observations
are available and the errors in the observations ( ) are assumed to be
constant, the total likelihood can be modeled as a multivariate Gauss-
ian distribution, resulting in the product term in Eq. (3). In this work,
we take , that is a relative error of 3%. The constant c is not ex-
plicitly determined. It is implicitly determined because the cumulative
probability of the distribution P is 1.

In most practical situations, no analytical expression for any of the
terms on the right hand side of Eq. (2) is available. Hence, a numerical
sampling procedure is generally used to indirectly obtain the posterior
distribution of the material properties from the prior distribution and
the likelihood function. In this calibration scheme, we use a Metropo-
lis–Hastings variant of the Markov Chain Monte Carlo (MCMC) sampler
to obtain the fitted parameter distribution. An MCMC sampler operates
in three steps [17,19,4]. First, the material parameters are initiated at
a certain point in the parameter space ( ) and the posterior probabil-
ity at that point is calculated knowing the likelihood function and the
prior distribution. Second, a new point is drawn in the material pa-
rameter space and the posterior probability at the new point is calcu-
lated. In the third step, the new sample is accepted if the new probabil
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ity is larger than the previous. However, the new sample is also accepted
if the acceptance probability is larger than a random number drawn
from the uniform standard distribution. Steps two and three are repeated
until a certain number of samples are obtained. From this sampled pos-
terior distribution, the point estimates and the credibility interval de-
scribed above can be readily calculated to obtain the optimum material
parameters and their uncertainty.

There is one challenge in executing the approach described so far.
One of the terms in the likelihood function in Eq. (3) is . If the for-
ward model used to calculate from a sampled is fairly complex,
then it may be challenging to use the model online during the MCMC
sampling. Online calculation of may be avoided by building a li-
brary of beforehand and then querying the library during the sam-
pling process for the closest available material parameters to . This is
akin to doing a nearest-neighbor interpolation on the simulation results
in the parameter space. A superior approach is to develop a computa-
tionally efficient surrogate model that is derived from the available sim-
ulation results to furnish for any . We describe the development
of such a surrogate forward model below.

2.2. Surrogate model from the simulation library using machine learning

A surrogate model that can furnish for any can be built using
any regression scheme if a library of previously run simulations that map

is available. In this work, we choose a ML regression method
– kernel support vector machine (SVM) – to build the surrogate model
[20]. One regression model is trained for each QoI that will be used for
material parameter calibration. Once a regression model is trained, it
can be used in the MCMC sampler described above to obtain the likeli-
hood for that is not present in the simulation library.

2.3. BI and ML calibration approach for a superelastic material model

Now we specialize the BI- and ML-based calibration approach to
a phenomenological model for superelastic deformation behavior. Fig.
2(a) shows the constitutive response of a typical superelastic NiTi speci-
men at room temperature. The model of Auricchio and Taylor is widely
used to simulate such deformation response [16,21]. The model is
developed in an infinitesimal strain framework. Stress and tempera-
ture are considered as the independent variables. The inherent defor-
mation mechanism of austenite to martensite phase transformation is
simulated. The total martensite phase fraction at a material point is
taken as the internal variable. The total strain at a material point is
additively decomposed into an elastic and a transformation compo-
nent ( ). The elastic behavior of the austenite and marten-
site phase is assumed to be isotropic. The evolution of the inter

nal variable is determined using a rate-independent formulation. This
model is implemented in various commercial FEM packages including
Abaqus (Simulia Dassault Systemes, version 2019). The model accepts
six key material inputs: Young’s modulus of austenite ( ), Young’s
modulus of martensite ( ), maximum transformation strain ( ), up-
per plateau stress in tension ( ), lower plateau stress in tension (
), and the compression plateau stress ( ). The connection of these
six parameters to the superelastic constitutive response is schematically
shown in Fig. 2(a). While is dependent on the microstructure and
the processing history of a specific NiTi specimen, often is not cal-
ibrated in simulations and it is assumed that the ratio / ap-
proximately equals 1.5 [22,23]. We do not make this assumption. The
model allows to specify the hardening of upper and lower plateaus. We
assume a fixed hardening of 30 MPa. The Abaqus implementation of the
model takes other minor inputs. Those are not addressed in this work.
Plasticity is also not addressed. In summary, the goal of this BI- and
ML-based calibration approach is to solve the inverse problem of deter-
mining given a set of experimental in-
puts.

2.3.1. Calibration using global stress data
As a first example of the BI-based calibration approach described in

Section 2.1, we calibrate the superelastic material model using the ob-
servations from a tensile test on a dogbone specimen that was laser-cut
from NiTi tubing. We heat treated a commercial tubing material with
50.8at.%Ni composition such that it was superelastic at room tempera-
ture. The dogbone test specimen geometry is shown in Fig. 2(a) inset.
An experimental stress–strain curve obtained at room temperature ac-
cording to the standard test method in ASTMF2516 [24] is shown in
Fig. 2(a). The test method consists of loading the specimen in displace-
ment control to an engineering strain of 6%, unloading to zero load, and
finally loading to fracture. We performed the test on an Instron 5969
load frame at a nominal strain rate of 1.4 × 10−4 s−1. The axial strain
in the gage was measured using the built-in video extensometer in the
Instron load frame. We calculated the axial stress in the specimen gage
from the load measured by a 1 kN load cell on the Instron load frame
and the cross-section dimensions of the test specimen measured prior to
test. We extracted axial true stress at 82 points along the stress–strain
curve such that the points were equally separated in time. These axial
stress values will serve as in the material parameter calibration.

We created a single element Abaqus/Standard FEM simulation of
the loading condition used in the experiment. The deformation in the
gage of a dogbone-type NiTi specimen can be adequately captured by a
single element model. We modeled the response of the single element
model using the superelastic material model in Abaqus. We created a li-
brary of 1843 instances of the simulation with the material parameters

Fig. 2. Test specimens and the quantities of interest (QoIs). (a) Stress–strain curve of a NiTi dogbone specimen tested per ASTM 2516. The specimen geometry is shown on the left inside
the inset. The single element simulation geometry used to model the tensile response of this specimen is shown on the right inside the inset. (b) A diamond NiTi specimen load–displace-
ment response during an isothermal tensile test. The specimen geometry is shown inside the inset. The simulation geometry consists of a quarter diamond and is highlighted in orange in
the inset. (c) A typical surface strain field in a NiTi diamond specimen obtained using a digital image correlation (DIC) measurement during a tensile test. In all cases, the loading direction
is along Y.
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in each case selected using Latin hypercube sampling of the follow-

ing parameter space: , and

. We started with smaller library sizes and
eventually settled with 1843 simulations since they furnished reasonable
results for this example. Unphysical material parameter combinations
such as were not instantiated. We applied boundary condi-
tions that were equivalent to the experimental boundary conditions used
in the dogbone tensile test described above. From the result of each sim-
ulation, we extracted axial true stress at 82 frames that were equally
separated in time. We selected the time points such that the simulation
axial stress data was available at the same time instants at which the
axial stress from the experiment was extracted. This is rather straight-
forward to do considering that both the experiment and simulation were
executed in displacement control with a constant strain rate boundary
condition. These axial stress values will serve as in the material pa-
rameter calibration.

From the experimental stress–strain data for the dogbone and the
simulation results in the library, we performed material property cal-
ibration. All data analysis was performed in Matlab (The Mathworks,
Inc., version R2018a). We selected global axial true stress at 82 locations
along the stress–strain curve as the QoI for this BI calibration example.
From these QoI, we first performed a traditional weighted least-squares
calibration to obtain the optimum values of the six material parame-
ters. For this, we performed minimization as specified in Eq. (1) using
a weight at each point that was proportional to the local slope of the
experimental stress–strain curve. The specific weights used at 82 QoIs
are listed in Supplementary Data. Weights proportional to the local
slope of the stress–strain curve appear to equalize the influence of data
points from the plateaus vs. the points from the elastic regimes. Note
that such minimization provides the optimum parameters among the pa-
rameter combinations in the 1843 simulation instances. Then, we per-
formed a BI calibration using a Goodman and Weare affine invariant en-
semble MCMC sampler [25]. We used 100 walkers and drew 4 times
106 samples. We used an uninformative flat prior. That is, each of the
six material parameters had a uniform probability distribution in the pa-
rameter space described in the paragraph above. In BI, the choice of
prior can influence the results. We performed a limited study and found
out that the results in this case are relatively insensitive to the choice
of prior distribution. The details of prior effect are provided in Sup-
plementary Data. We initialized the walkers with material parameters
drawn from a normal distribution centered at the mean of the parame-
ter space and with a standard deviation equal to 1/10th of the parame-
ter space span. We defined the likelihood function as described in Eq.
(3). We discarded the first 50% of the samples from the posterior as the
burn-in period. We graphically monitored the convergence of the MCMC
sampler by plotting the evolution of the autocorrelation parameter. We
assumed the sampling to have converged when the autocorrelation para-
meter decayed below 0.01. From the marginal posterior distribution for
each material parameter, we calculated MAP, median, and 95% credible
intervals. For this example, we did not perform simulation library en-
richment using the ML approach described in Section 2.2 since we felt
the library size of 1843 adequate to demonstrate the BI calibration ap-
proach.

For reference, the superelastic model parameters for this NiTi tubing
material, determined using a semi-supervised trial-and-error approach,
are – = {31 GPa, 26 GPa, 0.045, 340 MPa, 70 MPa, 510 MPa}.

2.3.2. Calibration using global load and full-field strain data
As a second example of the BI- and ML-based approach, we calibrate

the superelastic material model from global load and local strain obser-
vations obtained during a tensile test of a NiTi diamond specimen laser
cut from a strip material with a composition of 50.8at.%Ni. The spec-
imen geometry is shown as an inset in Fig. 2(b). We heat treated the
NiTi strip material such that it was superelastic at room temperature.
While the NiTi material used in this example has an identical composi-
tion as the tubing material in the previous example, the two materials
have undergone different processing steps. Thus, the mechanical proper-
ties of this material in strip form can be different than those of the NiTi
material in tubing form described in the previous section. Prior to the
test, we applied a speckle pattern of finely ground charcoal on a matte
white background to one surface of the diamond [26]. The experimen-
tal global load–displacement curve for this specimen is shown in Fig.
2(b). We performed the test on an Instron 5969 load frame in displace-
ment control at a nominal displacement rate of 2.94 × 10−3 mm s−1 at
room temperature. During the tension test, we acquired photographs of
the specimen gage (i.e., the curved struts on one side of the diamond)
at a regular interval of 1 s using a Mitakon Zhongyi 20 mm f/2 4.5X Su-
per Macro lens mounted on a Sony A7III digital mirrorless camera with
0.2 s exposure and ISO 400. We analyzed the photographs using Ncorr
DIC software [27] implemented in Matlab to obtain the full-field 2D sur-
face strain tensor. We used a subset radius of 30 pixels, subset spacing
of 2 pixels, and strain window radius of 15 pixels in Ncorr. A sample
full-field strain map (shear strain component) obtained using this DIC
measurement is shown in Fig. 2(c). We simultaneously recorded the
global load–displacement data during the tensile test using the load cell
and the crosshead movement respectively on the Instron load frame.

Based on the diamond specimen geometry and the experimental test
boundary conditions described above, we created a simulation of the
test. The diamond geometry has fourfold symmetry and thus, a quar-
ter diamond as shown in Fig. 2(b) inset was modeled to obtain the
full deformation response. We modeled the response using the super-
elastic material model in Abaqus. We created a library of 544 in-
stances of the simulation with the material parameters in each case se-
lected using Latin hypercube sampling of the following parameter space:

, and . Similar

to the first example, the library size was determined by trial and error
and unphysical material parameter combinations were not instantiated.

The QoI for the calibration scheme are the global load at 11 equally
separated points between A and B in Fig. 2(b), the global load at 11
equally separated points between B and C in Fig. 2(b), and the local
mean Green–Lagrange shear strain ( ) at four regions in the specimen
gage marked by to in Fig. 2(c) at the same 22 points during the
loading cycle where the global load data was extracted. The rationale
behind using the shear strain for calibration is provided in the Discus-
sion section. Thus, 22 global load values and 88 local shear strain values
were used as QoI for a total of 110 quantities. We extracted the
from the load–displacement and DIC data obtained in the tensile test.
The same quantities from each simulation in the simulation library were
extracted using Python post-processing scripts.

From and from each of the simulation in the simulation li-
brary, we obtained the least-squares calibrated material parameter vec-
tor by performing the minimization in Eq. (1). We used a weight of 0.25
for the strain QoI and a weight of 1 for load QoI. These weights and
the fact that there are four times as many strain quantities as load en-
sure that the influence of local strain and global load on the calibra
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tion is equal. Subsequently, we performed a BI calibration using the
same MCMC sampler as above. During MCMC sampling, we selected
the simulation result with the nearest available to the in the
MCMC draw to calculate the likelihood function value per the expres-
sion in Eq. (3). We determined which is the nearest avail-
able to in terms of the minimum Euclidean distance:

. Here the sum is over ,
which are the six components of the vector . Note that the variables
in this expression are standardized (i.e., have a zero mean and normal-
ized by the standard deviation) to ensure that the material parameters
with larger magnitude do not overly influence the distance minimization
compared to the smaller parameters. We did this because values are
only available for those vectors present in the simulation library and
not for arbitrary . The nature of the prior and the initial walker values
are similar to the example above. We generated 1 × 106 samples and
rejected the first 20% of the samples as the burn-in samples. As noted
previously, we graphically tracked the autocorrelation parameter to as-
sess the convergence of the MCMC sampler. From the sampled posterior
distribution of , we calculated median and MAP material parameters
as well as the credible interval. We refer to these results as the results
from BI approach.

To enrich the simulation library, we trained a regression SVM model
to each of the 110 QoI using the results of all 544 simulation instances.
Thus, a fitted SVM surrogate model furnishes the value of that QoI for
an arbitrary given as an input. We used the fitrsvm function in Mat-
lab for this purpose. We used a Gaussian kernel with automatic scaling.
We standardized the during fitting since various material parameters
are of widely different magnitudes. We used the automatic optimization
option in the fitting function. This option internally finds such hyperpa-
rameters of the SVM that minimize the fivefold cross-validation loss and
improve accuracy of the regression. The details of verification performed
on the trained models are described in Supplementary Data. The ver-
ification study demonstrates that 544 simulation samples are adequate
to furnish a reasonably accurate surrogate model in the six-dimensional
parameter space.

Using the trained SVM surrogate models, we performed another cal-
ibration using BI. During the MCMC sampling for this calibration, the
likelihood function in Eq. (3) was calculated using the QoI values ob-
tained from the trained models. A trained model can furnish for an
arbitrary . From the results of this calibration, we again computed de-
scriptors such as median and MAP. We refer to these results as the re-
sults from BI + ML approach. In summary, we calculated three calibra-
tion results for this example: least-squares, BI approach, and BI + ML
approach.

One motivation behind using the local strains as a QoI was the belief
that they will furnish such calibrated material parameters that result in
a more accurate simulation of the local strains. To determine if that is
the case, we also performed a BI + ML calibration where the weights
of the strain QoI were set to zero when calculating the likelihood func-
tion. Thus, only load QoI were used in this calibration. From the sam-
pled marginal posterior probability distributions in this example, we cal-
culated the median calibrated material properties.

To assess the robustness of the calibration, we performed a simple
validation test. For the validation, we laser-cut a dogbone shaped spec-
imen from the same NiTi strip material as that used to make the dia-
mond described above. This dogbone specimen is different from the dog-
bone specimen laser cut from NiTi tubing in the previous example. We
performed a tensile test on the dogbone at room temperature. We cre-
ated a simulation representative of this test and instantiated the sim-
ulation with median, MAP, and 95% credible interval parameters de-
scribed above. We compared the simulation results with the tensile test
measurements for the purpose of validation. A robust validation is typi-
cally performed on a model of equal or higher complexity compared to

the model from which calibration results are obtained. Such study is not
within the scope of this demonstration.

For reference, the superelastic model parameters for this NiTi strip
material, determined using a semi-supervised trial-and-error approach,
are – = {20 GPa, 15 GPa, 0.04, 330 MPa, 180 MPa, 495 MPa}.

3. Results

3.1. Calibration using global stress data

The results of least-squares and BI calibration for the example when
the global stress was used as the QoI are listed in Table 1 and graph-
ically shown in Fig. 3. The results of least-squares calibration in the
table reveal material parameter values in the general regime that is ex-
pected for a typical superelastic NiTi tubing material. However,
. This is unusual but not completely unexpected. Heat treated NiTi typ-
ically exhibits an intermediate R-phase formation during the austenite
to martensite phase transformation. The intermediate phase transforma-
tion has a small transformation strain associated with it and it gener-
ally manifests as a softer austenite modulus in the constitutive response
[28]. The marginal posterior probability distribution plots from BI cal-
ibration are shown in Fig. 3(a). A narrow posterior probability distrib-
ution reflects a lower uncertainty in the calibration of that parameter.
Thus, and are calibrated with a lower uncertainty compared to the
other four parameters. The lower uncertainty of these two calibrated pa-
rameters is also reflected in tighter bounds on the 95% credible interval
listed in Table 1.

The calibration results are graphically shown in Fig. 3(b). Over-
all, the MAP point estimate of the posterior distribution shows a closer
match with the experimental data as emphasized in the inset. The close-
ness of the match can be quantified and reported in terms of the mean
absolute percent error (MAPE) defined as,

(4)

Here N is the total number of QoIs, which is 82 in this example. In the
calculation of all MAPE values in this work, we did not consider the QoIs
corresponding to the first two steps of the loading sequence in each ex-
periment. This is because the load and the strains are close to zero in
the first two steps of a tensile test and the errors at those steps are of
lower concern. MAPE is tabulated in Table 1 and the smallest value is
obtained for the MAP point estimate from BI calibration. This suggests
that the MAP estimate furnished the most accurate parameter calibra-
tion. Overall the envelope of stress–strain response from the 95% cred-
ible interval is broad. The calibrated and the experimental stress–strain
curves diverge in the large strain regime. This is because plasticity is not
incorporated in the simulations.

Table 1
Results of calibration with global stress as the quantity of interest. MAPE refers to mean
absolute percent error.

Fit
description MAPE

(GPa) (GPa) (MPa) (MPa) (MPa) (%)

Least
squares fit

26.2 32.7 0.0517 355 61.9 448 15.2

Bi fit
(median)

25.0 33.0 0.0519 278 62.6 504 21.6

BI fit
(MAP)

28.0 32.6 0.0513 342 55.4 482 12.9

BI fit (95%
credible
interval)

11.6 25.8 0.0440 111 13.0 416

33.6 38.1 0.0595 387 124 665
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Fig. 3. Results of calibration with global stress as the quantity of interest. (a) Posterior probability distribution of the six NiTi material model parameters sampled using the Markov-chain
Monte Carlo scheme from a comparison of dogbone tensile test and simulations. (b) A qualitative comparison of the calibration on the same dogbone geometry.

3.2. Calibration using global load and full-field strain data

The results of calibration for the second example where global load
and the full-field surface strain from DIC were used as the QoI are listed
in Table 2. As previously noted, BI fit refers to the calibration that
was performed with the library of simulations only and BI + ML fit
refers to the calibration where ML regression model was used to enrich
the simulation library. The results for BI fit are graphically shown in
Fig. 4. Overall, the elastic moduli are calibrated with a higher confi-
dence compared to the other four parameters. This is evident from the
relatively narrow shape of the marginal posterior probability distribu-
tion for and in Fig. 4(a). However, the distributions of elastic

Table 2
Results of calibration for the diamond specimen using load and full-field strain data.

Fit
description MAPE

(GPa) (GPa) (MPa) (MPa) (MPa) (%)

Least
squares fit

49.4 39.2 0.0374 341 204 434 17.9

Bi fit
(median)

56.1 35.7 0.0453 402 194 523 20.5

BI fit
(MAP)

55.9 35.6 0.0524 470 108 475 22.2

BI fit (95%
credible
interval)

40.3 21.9 0.0355 305 105 359

75.9 41.4 0.0545 495 294 692
BI + ML
fit
(median)

54.0 42.7 0.0377 355 204 407 17.3

BI + ML
fit (MAP)

54.4 44.9 0.0368 351 201 408 17.4

BI + ML
fit (95%
credible
interval)

43.1 31.4 0.0351 328 191 379

66.3 49.5 0.0442 387 218 437

moduli show a multimodal structure. This aspect could be a manifes-
tation of the softer R-phase response that often accompanies the ini-
tial elastic deformation of NiTi and the gradual transition between stiff
elastic and softer plateau regimes. The least-squares calibrated parame-
ters furnish results that provide the closest match with the experimen-
tal data. The second closest match is furnished by the MAP parameters
from the BI fit. This is evident in the MAPE values in the table and in
the load–displacement curves in Fig. 4(b). The local shear strain ( )
prediction with the median fitted parameters is compared with the DIC
results at peak load in Fig. 4(c). The qualitative comparison appears
good. However, quantitatively the strains match only modestly. For ex-
ample, if MAPE were calculated only for the load quantities of interest,
then it is 11% for the median fitted parameters. This means that a larger
error (MAPE) is contributed by strains than load. We discuss this aspect
further in the Discussion section below.

The results for BI + ML fit are graphically shown in Fig. 5. Both me-
dian and MAP estimates from the BI + ML approach provided a better
fit than the BI approach and a marginally better fit than the least-squares
approach. This is evident from the smaller MAPE in Table 2, narrower
marginal posterior probability distributions for the fitted parameters in
Fig. 5(a) compared to the BI fit, and a relatively close match between
the simulated load–displacement curves for the fitted parameter and the
experimental data in Fig. 5(b). The local shear strain prediction with
the median fitted parameters is compared with the DIC results at peak
load in Fig. 5(c). The qualitative comparison appears good.

The use of both strain and load QoI in this example, rather than
using just the macro load as the QoI, resulted in the calibrated mate-
rial parameters that furnished a more accurate simulation of the local
strains. We performed a BI + ML calibration using only the load QoI.
This resulted in median = {48.9 GPa, 31.2 GPa, 0.0447, 342 MPa,
194 MPa, 494 MPa}. These values are different than the results listed in
Table 2 for the median . These material parameters resulted in a
MAPE of 21.9%, which is larger than the MAPE from median BI + ML
parameters listed in the Table (17.3%). The MAPE calculated for load
values only was 3.71%, which is smaller than the MAPE for load from
median BI + ML parameters listed in the Table (5.3%). This means
that the use of only load QoI resulted in a more accurate simulation of
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Fig. 4. Results of BI calibration with global load and surface strains as the quantity of interest. (a) Marginal posterior probability distributions of the six NiTi material model parameters
sampled using the Markov-chain Monte Carlo scheme from a comparison of diamond tensile test, DIC strain field data, and simulations. (b) A qualitative comparison of the calibration on
the same diamond geometry. Load–displacement data from the tensile test is shown. (c) Comparison of the local shear strain at peak displacement during the tensile test as measured using
DIC and from a simulation with the median fitted material properties.

Fig. 5. Results of BI + ML calibration with global load and surface strains as the quantity of interest. (a) Marginal posterior probability distributions of the six NiTi material model
parameters sampled using the Markov-chain Monte Carlo scheme from a comparison of diamond tensile test, DIC strain field data, and simulations. The simulation library was enriched
using a machine learning surrogate model in this case. (b) A qualitative comparison of the calibration on the same diamond geometry. Load–displacement data from the tensile test is
shown. (c) Comparison of the local shear strain at peak displacement as measured using DIC and from a simulation with the median fitted material properties.

the load response, but a less accurate simulation of the local strain re-
sponse.

The results of a simple validation test performed on a planar dogbone
specimen using the material parameters obtained from the BI + ML
approach are shown in Fig. 6. Simulated and experimental load–dis-
placement curves match reasonably well. MAPE for median and MAP
fitted parameters is 12.2% and 12.1% respectively. The model cali-
bration was performed using axial load and local shear strain data
with the specimen in a mixed loading mode. The loading mode in

this validation test was axial. Considering that the calibration was per-
formed in the mixed loading mode vs. the validation with uniaxial load-
ing mode, this validation shows that the calibration is robust. The dog-
bone specimen used in this simple validation study is different compared
to the dogbone specimen used in Section 3.1. This dogbone was manu-
factured from a planar Nitinol strip material, while the dogbone in Sec-
tion 3.1 was manufactured from a Nitinol tubing material. Nitinol strip
and tube materials exhibit different mechanical properties.

8
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Fig. 6. A simple validation of the BI + ML calibrated parameters obtained from the dia-
mond geometry. The validation simulation was performed on a planar dogbone simulation
geometry. The experimental data were obtained from tensile test of a planar dogbone spec-
imen fabricated from the identical material as that used to make the diamond samples.

4. Discussion

4.1. Propagation of material parameter uncertainty to simulations of cyclic
loading

The material parameter uncertainties obtained using the BI + ML
calibration approach above can be propagated to any subsequent sim-
ulations of superelastic deformation. We discuss the consequences of
propagating the material parameter uncertainties. One of the most com-
mon purposes of simulations using the superelastic model is to assess
the fatigue performance of a medical device fabricated from NiTi [29].
The simulations designed for this purpose typically impose a mean dis-
placement and a cyclic displacement amplitude on the component as
schematically shown in Fig. 7(a). The distribution of the local mean
strain and strain amplitude in the device during a fatigue loading cy-
cle is then simulated, resulting in a point cloud of the strains as shown
in Fig. 7(b). The critical mean strain and the critical strain amplitude
in the point cloud are typically used as the fatigue indicator parame-
ters for the NiTi device and a fatigue safety factor (FSF) is calculated
from them. Any uncertainty in the simulation inputs can naturally in-
troduce an uncertainty in the FSF calculation. To demonstrate the util-
ity of the BI calibration approach presented here, we illustrate how
the uncertainty in the superelastic NiTi material parameters can propa-
gate to a simulation of fatigue deformation. We created a simulation of
the diamond geometry shown in Fig. 2(b) with an imposed mean dis-
placement of 1.0 mm and a displacement amplitude of 0.4 mm. We cre-
ated 200 instances of this simulation with material parameters sampled
within the 95% credible interval for the BI + ML fit described in Sec-
tion 3.2. We extracted the strain tensor at each integration point in the
model at the two extrema of the fatigue loading cycle marked by D and

Fig. 7. A demonstration of the propagation of material parameter uncertainties to a subsequent simulation. (a) Schematic load–displacement curve of a fatigue-type loading characterized
by a mean displacement and a displacement amplitude. (b) A representative scatter plot of the strain amplitude vs. mean strain at finite element model integration points calculated
from the loading states D and E shown in (a). (c) Distribution of mean strain and (d) strain amplitude for fatigue loading simulations performed with the material parameter probability
distribution obtained using the BI + ML approach.
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E in Fig. 7(a). We calculated the mean strain and the strain am-
plitude at each integration point as,

(5)

where and is the strain tensor at an integration point at D and
E respectively. For each simulation, we calculated the maximum princi-
pal invariant of the two strain tensors above at each integration point. A
sample scatter plot of the strain amplitude plotted against mean strain is
shown in Fig. 7(b). We determined the critical strain amplitude and the
critical mean strain at the point with the largest value of the maximum
principal invariant of .

The probability distribution of the critical mean strain from the 200
simulations is shown in Fig. 7(c) and the probability distribution of the
strain amplitude is shown in Fig. 7(d). In both plots, the result obtained
from the median calibrated material properties from the BI + ML ap-
proach is marked by a dashed line. The mean strain shows a range of
approximately 0.01 and the strain amplitude shows a range of approxi-
mately 0.007. FSF calculated from this will show a relatively large vari-
ation. Thus, we have demonstrated that the uncertainty information fur-
nished by the BI-based calibration approach can be propagated to fa-
tigue simulations of NiTi and it can result in appreciable uncertainty in
the fatigue indicator parameters. Similar to strains, if other fatigue indi-
cator parameters for NiTi such as the phase transformation volume am-
plitude [30] are extracted from the simulations, then those values will
be affected by the material parameter uncertainty as well.

We emphasize that this approach provides a quantification of the
material parameter uncertainty that may be propagated to any subse-
quent simulations of fatigue. However, this approach does not quantify
the accuracy of the FSF calculated in this subsequent simulation. The
accuracy of the FSF will be certainly dependent on the accuracy of the
calibrated material parameters. However, it will also be influenced by
the ability of the inherent material model in simulating the fatigue in-
dicator parameters, the accuracy of the underlying finite element model
(e.g., geometry and mesh resolution), and any other assumptions made
in the simulations. While the results in this section demonstrated the
propagation of uncertainty in parameters calibrated using the BI + ML
approach, the broader posterior probability distribution in in the
nearest-neighbor BI approach (such as that shown in Fig. 4(a)) would
naturally result in a broader variation in the subsequent simulation re-
sults calculated using those material parameters.

4.2. Accuracy of local compressive strain prediction from the calibrated
parameters

While using the BI approach has benefits over the least-squares cal-
ibration approach and using the diamond geometry for calibrating the
NiTi superelasticity model has benefits over the use of only simple ten-
sion test data, neither the BI approach nor the specimen geometry can
overcome the limitations of the underlying constitutive model. In this
section we discuss one key example of such limitations. One motivation
behind using the full-field surface strain data was to obtain such cali-
brated material parameters that will furnish a more accurate simulated
local strain distribution compared to the calibration with just the global
load data. We showed above that the BI + ML approach using strain
and load QoI indeed furnished more accurate local strains in terms of
the MAPE compared to when a similar calibration was performed using
only the load QoI. However, it is worth comparing the BI + ML calibra-
tion results with the DIC data in detail. Thus, we compare the simulated
local strain distribution from the optimum calibrated material parame-
ters with the experimental data obtained using DIC. To emphasize, these
strains are for the diamond BI + ML calibration results when both strain
and load QoI were used.

A comparison of the simulated local shear strains (represented in
terms of simulation QoI) with the DIC measurements (represented in
terms of experimental QoI) in two key regions of the diamond sample at
the peak load is shown in Fig. 8. As described in Section 2.3.2, strains
averaged over four key regions in the diamond geometry served as the
QoIs along with the global load in the demonstration of BI + ML cal-
ibration approach. Two of those regions – marked and in Fig. 8
– exhibit compressive strains. In the figure, we have plotted the simu-
lated strains in these two regions as a function of the ratio .
The relative error in the strain prediction from the median or MAP ma-
terial parameter fit with respect to the experimental measurement is up
to 25%. While this is undesirable, it is unavoidable considering that the
model consistently underestimated the strains in some regions irrespec-
tive of the material parameters used as shown in Fig. 8(b). The phenom-
enological constitutive model considered in this study approximates the
NiTi deformation as isotropic, among other assumptions [16]. As a con-
sequence of this, the accuracy of the simulated local compressive strains
from the calibrated material properties is modest.

In the same figure, it can be seen that the ratio is 1.3
for the median fit and 1.0 for MAP from the BI + ML approach with
the 95% credible interval values in between. While the ratio is typically
taken as 1.5 for NiTi in tube form, 1.0 to 1.3 is a reasonable number for

Fig. 8. Accuracy of the compressive local strain prediction using the calibrated material properties. (a) Comparison of simulated strain QoI with experimental (DIC) strain QoI in region
in Fig. 2(c) at peak load shown in Fig. 2(b) by point B. (b) Comparison of simulated strain QoI with experimental (DIC) strain QoI in region in Fig. 2(c) at peak load. The simulated
strains are lower in magnitude than the DIC measurement which is shown by a black horizontal line in both plots. The QoIs are calculated using the shear strain component.
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NiTi strip material. The strip material has a texture with a strong <1
1 0> component [31]. A simple calculation using the crystallographic
theory of martensite [32] and mechanics reveals that
for [1 1 0] orientation and the ratio increases for orientations towards
[1 1 1], ultimately reaching 1.5 (See Supplementary Data for details
of the calculation). Thus, while the local compressive strain predictions
with the fitted material parameters are lacking due to the model limita-
tions, the ratio is reasonably calibrated. The MAP estimate of
1.0 for this ratio is also consistent with the observations in the literature
for [1 1 0] oriented single crystals [22].

4.3. Advantages and challenges of the BI calibration approach

A clear benefit of the BI approach to calibrating constitutive models
is the information about uncertainty in the fit obtained from them. This
material parameter uncertainty, together with other uncertainties can be
propagated to subsequent simulations as we demonstrated. The benefit
of using an ML-based surrogate model is that it can improve the parame-
ter fit by enriching the simulation library used in the calculation of like-
lihood function. The approach presented here is quite general and can
be implemented for any model for superelastic deformation. Also, this
approach can incorporate essentially any QoI in the calibration process
as long as it can be extracted from the simulations built with that con-
stitutive model. In particular, the use of strain QoI resulted in a more
accurate simulation of the local strains compared to using only the load
as the experimental comparator. The diamond geometry furnishes both
tensile and compressive response in different regions and allows the cal-
ibration of both tensile and compressive model parameters from a single
test.

A key challenge associated with this approach compared to the
least-square or trial-and-error calibration is the relatively large upfront
effort required in setting up the calibration scheme. It requires the con-
struction of a simulation library for a specific test geometry and test
method specification. However, once such a library is established, it can
be used for any subsequent calibration using the same test setup. An in-
formed choice between this sophisticated calibration method and alter-
natives can be made by setting concrete expectations about the credibil-
ity of simulations for a specific context of use. Frameworks such as the
ASME V&V 40 standard can be used for this purpose [33]. For example,
if the model risk is high for a particular context of use, then investing
in the BI calibration scheme could be desirable to ensure the influence
of material parameters and their uncertainty is rigorously considered.
However, if the model risk is low, then a simpler calibration approach
may be used to obtain the nominal material properties.

Implementation and execution of this calibration method requires
certain subjective inputs on the part of the analyst. For example, prior
distribution of the material parameters is a subjective choice. We
demonstrated that the calibrated material parameters from the posterior
distribution can be estimated using point estimates such as median and
MAP. However, it is a subjective choice to select a particular point esti-
mate. The weights used in calculating the likelihood function are also a
subjective choice. However, these subjective choices present an oppor-
tunity to incorporate the specialist’s knowledge about the constitutive
response in the calibration scheme.

Since the likelihood function is calculated from a comparison of the
simulated and the experimentally observed response of the QoIs, the
accuracy of calibration may be impacted by the limitations of the test
setup and the limitations of the underlying model itself. For example,
an incorrect DIC setup can furnish an inaccurate surface strain distribu-
tion, which will impact the calibration. In Section 4.2 we reported the
modest accuracy of the local strains simulated using the calibrated pa-
rameters due to the limitations of the model itself. We also attempted
to use the full strain tensor in four regions ( - in Fig. 2(c)) as the
QoI in the diamond calibration example. However, the results were not

superior to the case when the shear strain component was used as the
quantity of interest. We found that the finite element model used in this
study was able to capture the shear strains more accurately compared to
the normal strain components (See Supplementary Data for additional
details). Additionally, the SVM surrogate model accuracy was lower for
the normal strain components. These factors plausibly lead to the strain
tensor-based calibration approach not yielding superior results to the ap-
proach using only the shear strain component. Thus, ensuring that the
test methods furnish robust data, appropriate QoIs are selected to per-
form the calibration, and the underlying forward model is accurate are
the responsibilities of the specialist to ensure that reliable calibrated ma-
terial parameters are obtained and the simulation results from such pa-
rameters are accurate.

There are several opportunities to further refine this calibration ap-
proach and the communication of calibration results. There is signifi-
cant prior work on incorporating individual sources of uncertainty in the
Bayesian calibration procedure [34,5]. This work can be extended to in-
dividually assess the impact of various sources of uncertainty on the cali-
brated parameters. We extensively documented the effect of model error
on the accuracy of calibration. Various efforts have suggested methods
to account for and reduce the impact of model error or uncertainty on
the calibration procedure [4,35]. We presented the uncertainty in the
calibrated material parameters in terms of the credibility interval. The
credibility intervals may be reported in various ways including the high-
est posterior density interval (HPI) or equal-tailed interval [8]. One of
such representations that is the most informative may be chosen when
reporting the uncertainty.

5. Summary and conclusions

We presented the implementation of a Bayesian Inference material
property calibration approach for a constitutive model to simulate the
superelastic deformation of NiTi shape memory alloy. We made three
contributions as part of this approach:

1. We presented a diamond standard specimen geometry that can be
used to calibrate both tensile and compressive material parameters.
This is significant considering that the constitutive response of NiTi
is asymmetric in tension vs. compression.

2. We demonstrated a method to incorporate full-field surface strain
data obtained using digital image correlation in the calibration
process. This is significant because full-field strain data furnishes a
large number of comparators in the calibration process and can con-
tribute to increasing the accuracy of the calibration. Incorporation
of surface strain data also resulted in model parameters that furnish
more accurate local strain distributions and a more accurate determi-
nation of the fatigue safety factor from the simulations.

3. We demonstrated that a relatively simple machine learning surrogate
model can be used to enrich the simulation library used in the cal-
ibration. This is significant because generating a simulation library
using a nonlinear constitutive law such as that used in this work is
challenging. The surrogate model can enable performing high-quality
calibration in a computationally efficient manner.

The key advantage of the Bayesian Inference approach is that it fur-
nishes uncertainty in the calibrated material parameters and that un-
certainty can be propagated to subsequent simulations. While we ap-
plied the calibration scheme to the Auricchio and Taylor [16] model for
superelastic response implemented in Abaqus finite element modeling
framework, this method is versatile and can be applied to other models
for the deformation of NiTi SMA. The ultimate accuracy of simulations
conducted with the calibrated material parameters, however, depends
on the ability of the underlying constitutive model to accurately capture
the physics of the material response.

11



UN
CO

RR
EC

TE
D

PR
OO

F

H.M. Paranjape et al. Computational Materials Science xxx (xxxx) xxx-xxx

6. Data availability

The raw data required to reproduce these findings cannot be shared
at this time due to technical or time limitations. The processed data re-
quired to reproduce these findings are available to download fromhttps:
//github.com/confluentmedical/nitinol-bayes-cal. Annotated computer
code to perform this calibration is available athttps://github.com/
confluentmedical/nitinol-bayes-cal.
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