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Data-driven Mechanics of Metals

• Data Science has revolutionized

many fields of science.

• Our interest in Data Science:

Mechanics of Nitinol deformation.

• Mechanics of Nitinol + Data

Science: A hierarchical

development approach.
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Data-driven Mechanics of Nitinol

• Nitinol = mainly used to make

medical implants.

• End goal: Make data-driven

prediction of implant

deformation, fatigue

susceptibility under in-vivo

boundary condition.
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Data-driven Mechanics of Nitinol: Work in Progress

1 Quantify uncertainty in simulation

inputs, acquire full-field

deformation data using digital

image correlation.

2 Fuse data from in-situ and ex-situ

characterization methods to

develop a microstructure model

for fatigue.

3 Develop data-driven model for

superelasticity.
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Calibration of Material Properties for Simulation of Superelasticity

• Elastic modulus, plateau stresses,

transformation strains: Material

inputs for the simulation of

superelastic deformation.

• Material property inputs

determined by calibration to

tensile test data.

• Uncertainty in calibrated properties is rarely quantified.

• Calibration to just tensile test data does not capture

tension-compression asymmetry.

Paranjape | Confluent Medical | SMST 2022 5



Calibration of Material Properties for Simulation of Superelasticity

• Elastic modulus, plateau stresses,

transformation strains: Material

inputs for the simulation of

superelastic deformation.

• Material property inputs

determined by calibration to

tensile test data.

• Uncertainty in calibrated properties is rarely quantified.

• Calibration to just tensile test data does not capture

tension-compression asymmetry.

Paranjape | Confluent Medical | SMST 2022 5



Calibration of Material Properties for Simulation of Superelasticity

• Elastic modulus, plateau stresses,

transformation strains: Material

inputs for the simulation of

superelastic deformation.

• Material property inputs

determined by calibration to

tensile test data.

• Uncertainty in calibrated properties is rarely quantified.

• Calibration to just tensile test data does not capture

tension-compression asymmetry.

Paranjape | Confluent Medical | SMST 2022 5



Calibration of Material Properties for Simulation of Superelasticity

• Elastic modulus, plateau stresses,

transformation strains: Material

inputs for the simulation of

superelastic deformation.

• Material property inputs

determined by calibration to

tensile test data.

• Uncertainty in calibrated properties is rarely quantified.

• Calibration to just tensile test data does not capture

tension-compression asymmetry.

Paranjape | Confluent Medical | SMST 2022 5



Probabilistic Calibration Methodology

• Four components of the calibration
scheme:

1. A standardized specimen geometry.

2. A protocol to measure specimen

surface strain field during a tension

test.

3. A simulation library spanning

material property space and with

identical BC as experiment.

4. A Bayesian approach to extract

calibrated material properties using

Monte Carlo sampling.

• Output: Calibrated material property

probability distribution.

Paranjape | Confluent Medical | SMST 2022 6



Probabilistic Calibration Methodology

• Four components of the calibration
scheme:

1. A standardized specimen geometry.

2. A protocol to measure specimen

surface strain field during a tension

test.

3. A simulation library spanning

material property space and with

identical BC as experiment.

4. A Bayesian approach to extract

calibrated material properties using

Monte Carlo sampling.

• Output: Calibrated material property

probability distribution.

Paranjape | Confluent Medical | SMST 2022 6



Probabilistic Calibration Methodology

• Four components of the calibration
scheme:

1. A standardized specimen geometry.

2. A protocol to measure specimen

surface strain field during a tension

test.

3. A simulation library spanning

material property space and with

identical BC as experiment.

4. A Bayesian approach to extract

calibrated material properties using

Monte Carlo sampling.

• Output: Calibrated material property

probability distribution.

Paranjape | Confluent Medical | SMST 2022 6



Probabilistic Calibration Methodology

• Four components of the calibration
scheme:

1. A standardized specimen geometry.

2. A protocol to measure specimen

surface strain field during a tension

test.

3. A simulation library spanning

material property space and with

identical BC as experiment.

4. A Bayesian approach to extract

calibrated material properties using

Monte Carlo sampling.

• Output: Calibrated material property

probability distribution.

Paranjape | Confluent Medical | SMST 2022 6



Probabilistic Calibration Methodology

• Four components of the calibration
scheme:

1. A standardized specimen geometry.

2. A protocol to measure specimen

surface strain field during a tension

test.

3. A simulation library spanning

material property space and with

identical BC as experiment.

4. A Bayesian approach to extract

calibrated material properties using

Monte Carlo sampling.

• Output: Calibrated material property

probability distribution.

Paranjape | Confluent Medical | SMST 2022 6



Probabilistic Calibration Methodology

• Four components of the calibration
scheme:

1. A standardized specimen geometry.

2. A protocol to measure specimen

surface strain field during a tension

test.

3. A simulation library spanning

material property space and with

identical BC as experiment.

4. A Bayesian approach to extract

calibrated material properties using

Monte Carlo sampling.

• Output: Calibrated material property

probability distribution.

Paranjape | Confluent Medical | SMST 2022 6



Probabilistic Calibration Methodology

• Four components of the calibration
scheme:

1. A standardized specimen geometry.

2. A protocol to measure specimen

surface strain field during a tension

test.

3. A simulation library spanning

material property space and with

identical BC as experiment.

4. A Bayesian approach to extract

calibrated material properties using

Monte Carlo sampling.

• Output: Calibrated material property

probability distribution.

Details:

Paranjape et al. (2021). Computational Materials Science. https://doi.org/10.1016/j.commatsci.2021.110357.
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Standardized Specimen Geometry

• A diamond specimen geometry

that produces both tensile and

compressive strain fields when

loaded in Y.

• Shaded gray region is the area of

interest.
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Protocol to Measure Surface Strain

• A digital image correlation test protocol to obtain local strain

distribution and global load during a tensile test.
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Simulation Library

• A finite element analysis (FEA) simulation library spanning the

parameter space: EA ∈ [10GPa, 80GPa], EM ∈ [10GPa, 50GPa],

εt ∈ [0.03, 0.07], σUPS ∈ [100MPa, 600MPa], σLPS ∈ [10MPa, 400MPa],

and σCPS ∈ [150MPa, 700MPa]

• Identical boundary conditions (BCs) as in the experimental protocol.
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Material Property Calibration: The Easy Way (a.k.a. least-squares)

• Define a quantity Q based on the local strains and global load. It can be

either experimentally measured (Qexpt) or obtained from simulations

(Qsim).

• The calibrated material parametersmcal
LSQ can be determined by

performing the minimization: mcal
LSQ := argminm

∑N
i wi

(
Qsim

i −Qexpt
i

)2
.
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Material Property Calibration: Bayesian Inference

• Calculate the probability distribution (posterior) of the calibrated

material parameters using Bayes’ theorem and Markov Chain Monte

Carlo (MCMC) sampling.

• The median material properties and their uncertainty (standard

deviation) can be calculated from the posterior distribution.
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Augmenting the Simulation Library using Machine Learning

• The accuracy of the probability distribution for the calibrated material

properties depends on the size of the simulation library.

• A small library can result in a broad probability distribution irrespective

of the quality of the experimental data.

• It is computationally expensive to build a very large library using the

full-field FEA simulations.

• Thus, we fitted a support vector machine (SVM) regression model to

predict Qsim for an arbitrary value ofm.
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Results: Calibrated Parameters using BI + ML Approach

• Left: A probability distribution of the calibrated parameters obtained

using tensile and DIC test data for a diamond specimen.

• Top right: A comparison of the experimental data, the simulation result

using the median calibrated parameters, and the 95% interval.

• Bottom right: A comparison of the experimental strain field (DIC) and

the simulated strain field from median parameters.
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Results: Simple Validation of Results

• The calibrated material properties from a diamond specimen are used

to predict the response of a dogbone specimen.

• The predicted response is comparable to the experimental data.

• Diamond: Bending-dominated deformation.

• Dogbone: Tension-dominated deformation.
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Results: Propagation of Uncertainty to Subsequent Simulations

• Medical implants are subjected to cyclic BCs.

• Cyclic BCs = {mean disp., disp. amplitude}.

• {Critical strain amplitude, mean strain} are calculated using FEA to

assess the fatigue susceptibility of an implant.

• Probability distribution of the calibrated material properties→
probability distribution of the simulated fatigue indicators.
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Summary and Future Work

• We presented a BI + ML approach to calibrate the input material

parameters of a FEA model for superelastic deformation.

• This approach has uncertainty quantification built into it.

• The quantified uncertainties in the material parameters can be

propagated to the results of subsequent simulations.
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Probabilistic Approach to Local Property Determination

• The Bayesian material property determination approach is extensible to

other testing methods.

• Indentation: Tool to probe local material response.
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Fatigue: Shift from Deterministic to Probabilistic Approach

• Heart Valve Collaboratory (HVC): A community of practitioners to

develop a consensus on heart valve (NiTi and other metals) durability

assessment.

• Stay tuned for HVC special issue in Cardiovascular Engineering and

Technology journal in 2023.
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Data Science: One of Many Tools for Advancing Nitinol Implant Design
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Thank you

https://bit.ly/smst2022
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