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Data-driven Mechanics of Nitinol

+ Nitinol = mainly used to make
medical implants.
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Data-driven Mechanics of Nitinol

Future applications

Nitinol = mainly used to make
d, ‘ . | Models to make
medica ‘mp ants. data-driven predictions
End goal: Make data-driven
prediction of implant
deformation, fatigue @ RO o e
! mechanisms
susceptibility under in-vivo
boundary condition.
Methods to acquire data
@ and quantify uncertainty

in the data
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Calibration of Material Properties for Simulation of Superelasticity

+ Elastic modulus, plateau stresses,
transformation strains: Material
inputs for the simulation of
superelastic deformation.
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transformation strains: Material
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Calibration of Material Properties for Simulation of Superelasticity

+ Elastic modulus, plateau stresses,
transformation strains: Material
inputs for the simulation of
superelastic deformation.
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+ Uncertainty in calibrated properties is rarely quantified.
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Calibration of Material Properties for Simulation of Superelasticity

1500+
+ Elastic modulus, plateau stresses,
transformation strains: Material
inputs for the simulation of
superelastic deformation.
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N
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-+ Material property inputs
determined by calibration to
tensile test data. 0
True strain

True stress (MPa)

+ Uncertainty in calibrated properties is rarely quantified.

- Calibration to just tensile test data does not capture
temsion—compr’essiom asymmetry.
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Probabilistic Calibration Methodology

+ Four components of the calibration
scheme:
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1. Astandardized specimen geometry.

2. A protocol to measure specimen
surface strain field during a tension
test.

3. Asimulation library spanning
material property space and with
identical BC as experiment.

4. A Bayesian approach to extract
calibrated material properties using
Monte Carlo sampling.

+ Output: Calibrated material property
probability distribution.
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Probabilistic Calibration Methodology

- Four components of the calibration
scheme: Standard specimen geometry

1. Astandardized specimen geometry. N <z
2. A protocol to measure specimen
surface strain field during a tension

Simulation library

test Digital image mapping a range of
. . . . correlation (DIC) input material
3. Asimulation library spanning based experimental properties to loacal
. . protocol strain, global load
material property space and with R

identical BC as experiment.

4. A Bayesian approach to extract
calibrated material properties using <z <z
Monte Carlo sampling.

A Bayesian Inference (Bl) based scheme to obtain

+ Output: Calibrated material property material parameters and uncertainties
probability distribution.

Details:

Paranjape et al. (2021). Computational Materials Science. https://doi.org/10.1016/j.commatsci.2021.110357.
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Standardized Specimen Geometry

+ A diamond specimen geometry
that produces both tensile and
compressive strain fields when
loaded in V.
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Standardized Specimen Geometry

+ A diamond specimen geometry
that produces both tensile and
compressive strain fields when
loaded in V.

- Shaded gray region is the area of
interest.
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Protocol to Measure Surface Strain

- Adigital image correlation test protocol to obtain local strain
distribution and global load during a tensile test.
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Protocol to Measure Surface Strain

+ Adigital image correlation test protocol to obtain local strain
distribution and global load during a tensile test.
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Simulation Library

+ Afinite element analysis (FEA) simulation library spanning the
parameter space: £a € [10 GPa, 80 GPal, Em € [10 GPa, 50 GPa],
er € [0.03,0.07], oups € [100 MPa, 600 MPa], oips € [10 MPa, 400 MPa],
and ocps € [150 MPa, 700 MPa]

v

Time= 0.000
Var: LE, LE12

Paranjape | Confluent Medical | SMST 2022



Simulation Library

+ Afinite element analysis (FEA) simulation library spanning the
parameter space: £a € [10 GPa, 80 GPal, Em € [10 GPa, 50 GPa],

et € [0.03,0.07], oues € [100 MPa, 600 MPa], aps € [10 MPa, 400 MPal],
and ocps € [150 MPa, 700 MPa]

+ |dentical boundary conditions (BCs) as in the experimental protocol.

(.

Time= 0.000
primary Var: LE, LE12
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Material Property Calibration: The Easy Way (a.k.a. least-squares)

- Define a quantity @ based on the local strains and global load. It can be
either experimentally measured (Q®®") or obtained from simulations
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Material Property Calibration: The Easy Way (a.k.a. least-squares)

- Define a quantity @ based on the local strains and global load. It can be
either experimentally measured (Q®®") or obtained from simulations
<QS\'M)

+ The calibrated material parameters m{2, can be determined by
performing the minimization: m{Z, := arg min,,, >\ w; (Q™ — Q?x"t)z‘

1

2 2
R 21
£ 0 Lo
G Far
2 o o 2 o
4 6 8 2 3 4 5 0.04 0.045 0.05
Ea x10* Em x10* €t
2 2 2
ERE &0 B
L0 Lof Lo
PR N JA JA
2 o -2 o} 2 o
300 400 500 100 200 300 400 500 600
UPS ILPS ICPS

Paranjape | Confluent Medical | SMST 2022 10



Material Property Calibration: Bayesian Inference

+ Calculate the probability distribution (posterior) of the calibrated
material parameters using Bayes' theorem and Markov Chain Monte
Carlo (MCMC) sampling,.
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+ Calculate the probability distribution (posterior) of the calibrated
material parameters using Bayes' theorem and Markov Chain Monte
Carlo (MCMC) sampling,.

Tutorial:
Rappel et al. (2020). Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-018-09311-x.
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Material Property Calibration: Bayesian Inference

+ Calculate the probability distribution (posterior) of the calibrated
material parameters using Bayes' theorem and Markov Chain Monte
Carlo (MCMC) sampling,.

+ The median material properties and their uncertainty (standard
deviation) can be calculated from the posterior distribution.

Tutorial:
Rappel et al. (2020). Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-018-09311-x

Details:
Paranjape et al. (2021). Computational Materials Science. https://doi.org/10.1016/j.commatsci.2021.110357.
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Augmenting the Simulation Library using Machine Learning

+ The accuracy of the probability distribution for the calibrated material
properties depends on the size of the simulation library.
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Augmenting the Simulation Library using Machine Learning

+ The accuracy of the probability distribution for the calibrated material
properties depends on the size of the simulation library.

+ A small library can result in a broad probability distribution irrespective
of the quality of the experimental data.

+ Itis computationally expensive to build a very large library using the
full-field FEA simulations.

+ Thus, we fitted a support vector machine (SVM) regression model to
predict Q5™ for an arbitrary value of m.
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Results: Calibrated Parameters using Bl + ML Approach
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- Left: A probability distribution of the calibrated parameters obtained
using tensile and DIC test data for a diamond specimen.
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Results: Calibrated Parameters using Bl + ML Approach
/ — Experiment
/ \ 60/ - Least squares fit
= =Bl + ML: Median fitted parameters
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- Left: A probability distribution of the calibrated parameters obtained
using tensile and DIC test data for a diamond specimen.

+ Top right: A comparison of the experimental data, the simulation result
using the median calibrated parameters, and the 95% interval.
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Results: Calibrated Parameters using Bl + ML Approach

.
d — Experiment

I 60/ - Least squares fit

! - -BI+ ML: Median fitted parameters
1
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- Left: A probability distribution of the calibrated parameters obtained
using tensile and DIC test data for a diamond specimen.

+ Top right: A comparison of the experimental data, the simulation result
using the median calibrated parameters, and the 95% interval.

- Bottom right: A comparison of the experimental strain field (DIC) and
the simulated strain field from median parameters.
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Results: Simple Validation of Results
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+ The calibrated material properties from a diamond specimen are used
to predict the response of a dogbone specimen.
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+ The predicted response is comparable to the experimental data.
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+ The calibrated material properties from a diamond specimen are used
to predict the response of a dogbone specimen.

+ The predicted response is comparable to the experimental data.
+ Diamond: Bending-dominated deformation.

-+ Dogbone: Tension-dominated deformation.
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Results: Propagation of Uncertainty to Subsequent Simulations

23

+ Medical implants are subjected to cyclic BCs.
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Results: Propagation of Uncertainty to Subsequent Simulations

Mean D

Load

—_—
Amplitude

Displacement

+ Medical implants are subjected to cyclic BCs.
+ Cyclic BCs = {mean disp., disp. amplitude}.
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Results: Propagation of Uncertainty to Subsequent Simulations

o
o
9
S
3

Mean

Load
Strain amplitude
=) o
=) o o
g8 o 2
& 2 &

—_—
Amplitude

=

002 004 006 008
Displacement Mean strain

+ Medical implants are subjected to cyclic BCs.

+ Cyclic BCs = {mean disp., disp. amplitude}.

+ {Critical strain amplitude, mean strain} are calculated using FEA to
assess the fatigue susceptibility of an implant.
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Results: Propagation of Uncertainty to Subsequent Simulations
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+ Medical implants are subjected to cyclic BCs.

+ Cyclic BCs = {mean disp., disp. amplitude}.

+ {Critical strain amplitude, mean strain} are calculated using FEA to
assess the fatigue susceptibility of an implant.

- Probability distribution of the calibrated material properties —
probability distribution of the simulated fatigue indicators.
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Summary and Future Work

+ We presented a Bl + ML approach to calibrate the input material
parameters of a FEA model for superelastic deformation.
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Summary and Future Work

+ We presented a Bl + ML approach to calibrate the input material
parameters of a FEA model for superelastic deformation.

+ This approach has uncertainty quantification built into it.

+ The quantified uncertainties in the material parameters can be
propagated to the results of subsequent simulations.
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Probabilistic Approach to Local Property Determination

+ The Bayesian material property determination approach is extensible to
other testing methods.

Oliver-Pharr method applied in SMA

—e— Perfect Berkovich Difference
60 {——= Tuncaled25% o - - - m — — m = 12

Oliver-Pharr equation,

S

VA= gE,

EA=72GPa,
EM =59.4 GPa

Difference (%)

B = 1.1667 for Berkovich indenter;
E_is reduced modulus,
1_(l—v2)+(1—v[2) 35 ﬁ ?
E. E E; 0
100 250

Effective modulus (GPa)

15 00
Indentation depth (nm)

* SMA used has a moduli as, EA = 72 GPa, EM = 59.4 GPa.

* The contact area is not well determined

Xuesong Gao, Daniel Hong, Harshad Paranjape, Wei Zhang, Peter Anderson
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Probabilistic Approach to Local Property Determination

+ The Bayesian material property determination approach is extensible to
other testing methods.
+ Indentation: Tool to probe local material response.

Oliver-Pharr method applied in SMA

—e— Perfect Berkovich Difference
60 {——= Tuncated25% o - - — — m — — m = 12

Oliver-Pharr equation,

S

VA= E,

EA=72GPa,
EM =59.4 GPa

Difference (%)

B = 1.1667 for Berkovich indenter;
E_is reduced modulus,

l_(l—V2)+(1_sz) 35 j ?

E, E E, 0
100 250

Effective modulus (GPa)

15 200
Indentation depth (nm)

* SMA used has a moduli as, EA = 72 GPa, EM = 59.4 GPa.

* The contact area is not well determined

Xuesong Gao, Daniel Hong, Harshad Paranjape, Wei Zhang, Peter Anderson
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Fatigue: Shift from Deterministic to Probabilistic Approach

- Heart Valve Collaboratory (HVC): A community of practitioners to
develop a consensus on heart valve (NiTi and other metals) durability
assessment.
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Fatigue: Shift from Deterministic to Probabilistic Approach

Heart Valve Collaboratory (HVC): A community of practitioners to
develop a consensus on heart valve (NiTi and other metals) durability
assessment.

Stay tuned for HVC special issue in Cardiovascular Engineering and
Technology journal in 2023.
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Call for Papers for Special Issue on Nitinol Medical
Devices

The journal Shape Memory and Superelasticity is organizing a special issue dedicated to
Nitinol medical devices. This issue will address scientific and engineering topics that
relate to the durability and the function of cardiovascular implants manufactured from
Nitinol. Certain examples of such topics include fatigue properties, influence of
processing on device performance, and interaction between cardiovascular physiology
and the Nitinol material.

The journal is soliciting original research articles that broadly fall in the scope of this
special issue. Typical research articles will be approximately 8 journal pages in length.
Longer papers can be accommodated with permission from the guest editors.

Srinidhi Nagaraja and Harshad Paranjape will be guest editors in this special issue. Please

inform both guest editors if interested in submitting an article to this special issue by
January 14, 2022 .
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