Nitinol SE508 Tubing*

PHYSICAL PROPERTIES
Melting Point: 2390°F 1310°C
Density: 0.234 lb/in³ 6.5 g/cm³
Electrical Resistivity: 32 µohm-in 82 µohm-cm
Modulus of Elasticity: 6-11 x 10⁶ psi 41-75 x 10³ MPa
Coefficient of Thermal Expansion: 6.1 x 10⁻⁶/°F 11 x 10⁻⁶/°C

MECHANICAL PROPERTIES
Ultimate Tensile Strength (min. UTS): 155 x 10³ psi 1070 MPa
Total Elongation (min): 10% 10%

SUPERELASTIC PROPERTIES
Loading Plateau Stress @ 3% strain (min): 55 x 10³ psi 380 MPa
Permanent Set (after 6% strain) (max): 0.3% 0.3%
Transformation Temperature (A₆): <59° F <15° C

COMPOSITION (Meets ASTM F2063 requirements)
Nickel (nominal): 55.8 wt.%
Titanium: Balance
Oxygen (max): 0.05 wt.%
Carbon (max): 0.02 wt.%

COMMENTS
These values should only be used as guidelines for developing material specifications. Properties of Nitinol Alloys are strongly dependent on processing history and ambient temperature. The mechanical and superelastic properties shown here are typical for standard superelastic straight tube at room temperature tested in uniaxial tension. Bending properties differ, and depend on specific geometries and applications. Modulus is dependent on temperature and strain. Larger tubes (≥ 4.0mm OD) may require custom specifications.

*All values are typical, at room temperature. SE508 is a binary alloy suitable for superelastic applications at room and/or body temperature.