

In-vitro to In-vivo Correlation of Corrosion in Nitinol Cardiovascular Stents

Stacey J.L. Sullivan¹ Daniel Madamba² Shiril Sivan¹ Katie Miyashiro² Maureen L. Dreher¹ Christine Trépanier² Srinidhi Nagaraja¹

¹Office of Science and Engineering Laboratories; FDA Center for Devices & Radiological Health ²Confluent Medical Technologies

May 19, 2017 **SMST 2017**

Stent Corrosion Testing Paradigm

Select Updates for Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems

Motivation

- ASTM F2129 not intended to represent *in-vivo* conditions
- Results difficult to correlate with *in-vivo* performance
- Variability in breakdown potentials from workshop respondents

Proposed Acceptance Criteria

 $Eb \ge 600 \text{ mV} \rightarrow \text{Acceptable}$

- Eb = $300-600 \text{ mV} \rightarrow \text{Marginal}$
- Eb < 300 mV \rightarrow Unacceptable

Rosenbloom and Corbett, 2007

2012 FDA Corrosion Workshop Nagaraja et al., 2016

- Manufacture and characterize Nitinol stents manufactured to possess low to high corrosion resistance (ASTM F2129)
- 2. Investigate *in-vivo* pitting corrosion of Nitinol stents manufactured to possess low to high corrosion resistance
- 3. Correlate *in-vitro* nickel leaching with *in-vivo* release and biocompatibility in Nitinol stents with low to high corrosion resistance

Stent Manufacturing Process

Group	SP	MP	AF	ОТ
	Salt Pot	Mechanical Polish	Air Furnace	Oxidized Tubing
Tubing		GroundHoned		As –received
		Laser Cut		
Heat Affected Zone		HonedDebur & DeslugChemically Polish		(no processing)
Stress Relief	505°C	CSalt Pot	540°C Air furnace	505°C Salt Pot
Expansion	505°C Salt Pot		505°C Air furnace	505°C Salt Pot
Af Tuning	505°C	Salt Pot	550°C Air furnace	505°C Salt Pot
Finishing	Ultrasonic clean	 Ultrasonic clean Chemical Etch Chemical Polish Burnish Ultrasonic clean 	Ultrasonic clean	
Visual Appearance				

 \rightarrow High strain regions at the apex of V-struts

Methods

<u>In-vitro</u>

- Surface characterization \rightarrow SEM/Auger
- Pitting corrosion \rightarrow ASTM F2129
- Uniform corrosion \rightarrow Nickel leach

<u>In-vivo</u>

- Minipig implantation:
 - left and right iliac arteries
 - 12 animals implanted
- Single stent conditions (n=6/group)
- 6 month implantation period
- Explanted stent surface analysis
 - SEM and EDS

In-vitro Testing

Surface Characterization - SEM

Salt Pot (high F2129)

Air Furnace (low F2129)

Mech. Polish (medium F2129)

Oxidized Tubing (low F2129)

Surface Characterization - Auger

Salt Pot

Mech. Polish

ASTM F2129 Testing

ASTM F2129 Results

	SP	MP	AF	ОТ
E _r (mV)	-224 ± 112	-103 ± 65	-141 ± 44	-230 ± 178
E _b (mV)	975 ± 94	767 ± 226	111 ± 63	68 ± 29
E _b -E _r (mV)	1199 ± 118	870 ± 240	252 ± 90	297 ± 165

n=8-14/group

Nickel Leach Testing and Results

- Stents crimped prior to testing
- 10 time points: Day 1, 2, 3, 5, 7, 14, 21, 30, 45, 60
- Ni release: OT > SP > AF > MP for all time points (*p<0.001)
- ASTM F2129 breakdown potentials not correlated to Ni release

Explant Analysis

In-Situ Imaging

 \rightarrow Deformation, but no fractures observed in explants

Explanted Artery Nickel

Arterial tissue surrounding stent digested using papain

 \rightarrow Artery nickel: OT > AF > SP > MP

→ Explanted artery Ni values variable compared to in-vitro results

SEM Imaging – Salt Pot (high F2129)

Non-implanted

Explant

	Ni/Ti	n	
SD Non implanted	1.12	10	
SP Non-Implanted	+/- 0.06	15	
CD Evalente	1.13	26	
SP Explants	+/- 0.04	50	

\rightarrow No corrosion observed in explanted SP stents

SEM Imaging – Mech. Polish (medium F2129)

Non-implanted

Explant

	Ni/Ti	n
MD Non implanted	1.11	11
wip Non-Implanted	+/- 0.01	14
MD Evalente	1.11	17
wip explants	+/- 0.03	47

\rightarrow No corrosion observed in explanted MP stents

SEM Imaging – Air Furnace (low F2129)

Non-implanted

SEM Imaging – Air Furnace (low F2129)

	Ni/Ti	n
AE Non-implanted	1.11	12
Ar Non-Implanted	+/- 0.02	13
AF Explante Native Surface	1.08	าา
AF Explaints - Native Surface	+/- 0.05	22
AF Evelente Correction	0.89	24
AF Explants – Corrosion	+/- 0.15	24

→ Micro-cracks & corrosion observed in explanted AF stents

SEM Imaging – Oxidized Tubing (low F2129) **Explant**

Non-implanted

SEM Imaging – Oxidized Tubing (low F2129)

	Ni/Ti	n	
OT Non-implanted	1.16	20	
Of Non-Implanted	+/- 0.10	20	
OT Explants Nativo Surfaco	1.05	วา	
OT Explants - Native Surface	+/- 0.31	52	
OT Explants Corresion	1.14	F0	
OT Explaints – Corrosion	+/- 0.11	59	

\rightarrow Pitting observed in explanted OT stents

Corrosion Depth (FIB milling)

AF Stent

11.34.11 AM 15.0 mm SE 20.00 kV 457 µm 700 x 17-081R A

AF \rightarrow ~1 micron deep corrosion

OT Stent

 219/2016
 mág. W0
 HV
 HPW
 Model det
 30 µm

 258/2016
 mág. W0
 HV
 HPW
 Model det
 30 µm

 $OT \rightarrow ~9$ micron deep pits

Elemental Analysis Summary

- SP and MP explants: no change in Ni/Ti ratios
- AF explants: sig. lower Ni/Ti ratios in corroded regions
- OT explants: similar Ni/Ti ratios in corroded regions

Discussion

Conclusions

Bench Testing Correlations

- Ni release (uniform corrosion) is not correlated to breakdown potentials from ASTM F2129 testing
- Oxide thickness and composition provides insight into Ni release

Discussion

Conclusions

Bench Testing Correlations

- Ni release (uniform corrosion) is not correlated to breakdown potentials from ASTM F2129 testing
- Oxide thickness and composition provides insight into Ni release

In-vitro to In-vivo Correlations

- Ni release
 - *In-vitro*: OT > SP > AF > MP (uniform corrosion)
 - *In-vivo*: OT > AF > SP > MP (localized + uniform corrosion)
- Pitting Corrosion
 - $E_b > \sim 600 \text{ mV} \rightarrow \text{no localized corrosion observed}$
 - $E_b < \sim 200 \text{ mV} \rightarrow \text{localized corrosion observed}$

Acknowledgements

- Matthew Di Prima, PhD
- Phillip Stafford, PhD
- Elon Malkin, PhD
- Jiwen Zheng, PhD
- Ramesh Marrey, PhD
- Chris Lasley
- Ron Waxman, MD
- David Hellinga, MS

FD)

Upcoming features:

Biologics

Overlapped stents

Conclusions

Bench Testing Correlations

- Ni release (uniform corrosion) is not correlated to breakdown potentials from ASTM F2129 testing
- Oxide thickness and composition provides insight into Ni release

In-vitro to In-vivo Correlations

- Ni release
 - *In-vitro*: OT > SP > AF > MP (uniform corrosion)
 - *In-vivo*: OT > AF > SP > MP (localized + uniform corrosion)
- Pitting Corrosion
 - $E_b > \sim 600 \text{ mV} \rightarrow \text{no localized corrosion observed}$
 - $E_b < \sim 200 \text{ mV} \rightarrow \text{localized corrosion observed}$